skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: mTeeth: Identifying Brushing Teeth Surfaces Using Wrist-Worn Inertial Sensors
Ensuring that all the teeth surfaces are adequately covered during daily brushing can reduce the risk of several oral diseases. In this paper, we propose the mTeeth model to detect teeth surfaces being brushed with a manual toothbrush in the natural free-living environment using wrist-worn inertial sensors. To unambiguously label sensor data corresponding to different surfaces and capture all transitions that last only milliseconds, we present a lightweight method to detect the micro-event of brushing strokes that cleanly demarcates transitions among brushing surfaces. Using features extracted from brushing strokes, we propose a Bayesian Ensemble method that leverages the natural hierarchy among teeth surfaces and patterns of transition among them. For training and testing, we enrich a publicly-available wrist-worn inertial sensor dataset collected from the natural environment with time-synchronized precise labels of brushing surface timings and moments of transition. We annotate 10,230 instances of brushing on different surfaces from 114 episodes and evaluate the impact of wide between-person and within-person between-episode variability on machine learning model's performance for brushing surface detection.  more » « less
Award ID(s):
1640813 1823221
PAR ID:
10290605
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
5
Issue:
2
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Monitoring human gait is essential to quantify gait issues associated with fall-prone individuals as well as other gait-related movement disorders. Being portable and cost-effective, ambulatory gait analysis using inertial sensors is considered a promising alternative to traditional laboratory-based approach. The current study aimed to provide a method for predicting the spatio-temporal gait parameters using the wrist-worn inertial sensors. Eight young adults were involved in a laboratory study. Optical motion analysis system and force-plates were used for the assessment of baseline gait parameters. Spatio-temporal features of an Inertial Measurement Unit (IMU) on the wrist were analyzed. Multi-variate correlation analyses were performed to develop gait parameter prediction models. The results indicated that gait stride time was strongly correlated with peak-to-peak duration of wrist gyroscope signal in the anterio-posterior direction. Meanwhile, gait stride length was successfully predicted using a combination model of peak resultant wrist acceleration and peak sagittal wrist angle. In conclusion, current study provided the evidence that the wrist-worn inertial sensors are capable of estimating spatio-temporal gait parameters. This finding paves the foundation for developing a wrist-worn gait monitor with high user compliance. 
    more » « less
  2. Public release of wrist-worn motion sensor data is growing. They enable and accelerate research in developing new algorithms to passively track daily activities, resulting in improved health and wellness utilities of smartwatches and activity trackers. But, when combined with sensitive attribute inference attack and linkage attack via re-identification of the same user in multiple datasets, undisclosed sensitive attributes can be revealed to unintended organizations with potentially adverse consequences for unsuspecting data contributing users. To guide both users and data collecting researchers, we characterize the re-identification risks inherent in motion sensor data collected from wrist-worn devices in users' natural environment. For this purpose, we use an open-set formulation, train a deep learning architecture with a new loss function, and apply our model to a new data set consisting of 10 weeks of daily sensor wearing by 353 users. We find that re-identification risk increases with an increase in the activity intensity. On average, such risk is 96% for a user when sharing a full day of sensor data. 
    more » « less
  3. null (Ed.)
    We envision a convenient telepresence system available to users anywhere, anytime. Such a system requires displays and sensors embedded in commonly worn items such as eyeglasses, wristwatches, and shoes. To that end, we present a standalone real-time system for the dynamic 3D capture of a person, relying only on cameras embedded into a head-worn device, and on Inertial Measurement Units (IMUs) worn on the wrists and ankles. Our prototype system egocentrically reconstructs the wearer's motion via learning-based pose estimation, which fuses inputs from visual and inertial sensors that complement each other, overcoming challenges such as inconsistent limb visibility in head-worn views, as well as pose ambiguity from sparse IMUs. The estimated pose is continuously re-targeted to a prescanned surface model, resulting in a high-fidelity 3D reconstruction. We demonstrate our system by reconstructing various human body movements and show that our visual-inertial learning-based method, which runs in real time, outperforms both visual-only and inertial-only approaches. We captured an egocentric visual-inertial 3D human pose dataset publicly available at https://sites.google.com/site/youngwooncha/egovip for training and evaluating similar methods. 
    more » « less
  4. Hand hygiene is crucial in preventing the spread of infections and diseases. Lack of hand hygiene is one of the major reasons for healthcare associated infections (HAIs) in hospitals. Adherence to hand hygiene compliance by the workers in the food business is very important for preventing food-borne illness. In addition to healthcare settings and food businesses, hand washing is also vital for personal well-being. Despite the importance of hand hygiene, people often do not wash hands when necessary. Automatic detection of hand washing activity can facilitate justin-time alerts when a person forgets to wash hands. Monitoring hand washing practices is also essential in ensuring accountability and providing personalized feedback, particularly in hospitals and food businesses. Inertial sensors available in smart wrist devices can capture hand movements, and so it is feasible to detect hand washing using these devices. However, it is challenging to detect hand washing using wrist wearable sensors since hand movements are associated with a wide range of activities. In this paper, we present HAWAD, a robust solution for hand washing detection using wrist wearable inertial sensors. We leverage the distribution of penultimate layer output of a neural network to detect hand washing from a wide range of activities. Our method reduces false positives by 77% and improves F1-score by 30% compared to the baseline method. 
    more » « less
  5. Pleasant brush therapies may benefit those with autism, trauma, and anxiety. While studies monitor brushing velocity, hand-delivery of brush strokes introduces variability. Detailed measurements of human-delivered brushing physics may help under-stand such variability and subsequent impact on receivers’ perceived pleasantness. Herein, we instrument a brush with multi-axis force and displacement sensors to measure their physics as 12 participants pleasantly stroke a receiver’s forearm. Algorithmic procedures identify skin contact, and define four stages of arrival, stroke, departure, and airtime between strokes. Torque magnitude, rather than force, is evaluated as a metric to minimize inertial noise, as it registers brush bend and orientation. Overall, the results of the naturally delivered brushing experiments indicate force and velocity values in the range of 0.4 N and 3-10 cm/s, in alignment with prior work. However, we observe significant variance between brushers across velocity, force, torque, and brushstroke length. Upon further analysis, torque and force measures are correlated, yet torque provides distinct information from velocity. In evaluating the receiver’s response to individual differences between brushers of the preliminary case study, higher pleasantness is tied to lower mean torque, and lower instantaneous variance over the stroke duration. Torque magnitude appears to complement velocity’s influence on perceived pleasant-ness. 
    more » « less