skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding Physical Processes Represented by the Monin–Obukhov Bulk Formula for Momentum Transfer
Abstract Physical processes represented by the Monin–Obukhov bulk formula for momentum are investigated with field observations. We discuss important differences between turbulent mixing by the most energetic non-local, large, coherent turbulence eddies and local turbulent mixing as traditionally represented by K-theory (analog to molecular diffusion), especially in consideration of developing surface-layer stratification. The study indicates that the neutral state in a horizontally homogeneous surface layer described in the Monin–Obukhov bulk formula represents a special neutrality regardless of wind speed, for example, the surface layer with no surface heating/cooling. Under this situation, the Monin–Obukhov bulk formula agrees well with observations for heights to at least 30 m. As the surface layer is stratified, stably or unstably, the neutral state is achieved by mechanically generated turbulent mixing through the most energetic non-local coherent eddies. The observed neutral relationship between $$u_*$$ u ∗ (the square root of the momentum flux magnitude) and wind speed V at any height is different from that described by the Monin–Obukhov formula except within several metres of the surface. The deviation of the Monin–Obukhov neutral $$u_*-V$$ u ∗ - V linear relation from the observed one increases with height and contributes to the deteriorating performance of the bulk formula with increasing height, which cannot be compensated by stability functions. Based on these analyses, estimation of drag coefficients is discussed as well.  more » « less
Award ID(s):
1701278
PAR ID:
10290609
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Boundary-Layer Meteorology
Volume:
177
Issue:
1
ISSN:
0006-8314
Page Range / eLocation ID:
69 to 95
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A persistent spatial organization of eddies is identified in the lowest portion of the stably stratified planetary boundary layer. The analysis uses flow realizations from published large-eddy simulations (Sullivan et al. in J Atmos Sci 73(4):1815–1840, 2016) ranging in stability from near-neutral to almost z-less stratification. The coherent turbulent structure is well approximated as a series of uniform momentum zones (UMZs) and uniform temperature zones (UTZs) separated by thin layers of intense gradients that are significantly greater than the mean. This pattern yields stairstep-like instantaneous flow profiles whose shape is distinct from the mean profiles that emerge from long-term averaging. However, the scaling of the stairstep organization is closely related to the resulting mean profiles. The differences in velocity and temperature across the thin gradient layers remain proportional to the surface momentum and heat flux conditions regardless of stratification. The vertical thickness of UMZs and UTZs is proportional to height above the surface for near-neutral and weak stratification, but becomes thinner and less dependent on height as the stability increases. Deviations from the logarithmic mean profiles for velocity and temperature observed under neutral conditions are therefore predominately due to the reduction in eddy size with increasing stratification, which is empirically captured by existing Monin–Obukhov similarity relations for momentum and heat. The zone properties are additionally used to explain trends in the turbulent Prandtl number, thus providing a connection between the eddy organization, mean profiles, and turbulent diffusivity in stably stratified conditions. 
    more » « less
  2. Abstract Harvesting of crops in a weakly sloping Midwestern field during the Stable Atmospheric Variability and Transport (SAVANT) observation campaign allowed for a systematic investigation of the influence of surface roughness and static stability magnitude on the applicability of the Monin–Obukhov similarity (MOST) and hockey-stick transition (HOST) theories during stable boundary layer periods. We analyze momentum flux and turbulent velocity scale V TKE in three regimes, defined using the gradient Richardson number Ri and flux Richardson number Ri f as regime 1 (0 < Ri ≤ 0.1 and 0 < Ri f ≤ 0.1), regime 2 (0.1 < Ri ≤ 0.23 and 0.1 < Ri f ≤ 0.23), and regime 3 (both Ri and Ri f > 0.23). After harvest, in regime 1, stability varied from near-neutral to weakly stable and both MOST and HOST were applicable to estimate the momentum fluxes and V TKE as a function of mean wind speed. In regime 2, the momentum flux deviated from the MOST linear relationship as stability increased. In regimes 1 and 2, a HOST-defined threshold wind speed V s was identified beyond which V TKE increased linearly with wind speed at a rate of 0.26 for all observation heights. Below this threshold wind speed, V TKE behaved independent of mean wind and observation heights. Alternatively, for preharvest periods, MOST was applicable in regimes 1 and 2 for all heights and HOST was applicable with reduced V s for heights above the crop layer. Regime 3 during pre- and postharvest consisted of strongly stable periods and very weak to weak winds, where MOST was found to be invalid and V TKE remained low and independent of wind speed. The results suggest that roughness due to crops enhances the turbulence generation at lower wind speeds. 
    more » « less
  3. We introduce an analytical model that describes the vertical structure of Ekman boundary layer flows coupled to the Monin-Obukhov Similarity Theory (MOST) surface layer repre- sentation, which is valid for conventionally neutral (CNBL) and stable (SBL) atmospheric conditions. The model is based on a self-similar profile of horizontal stress for both CNBL and SBL flows that merges the classic 3/2 power law profile with a MOST-consistent stress profile in the surface layer. The velocity profiles are then obtained from the Ekman momentum balance equation. The same stress model is used to derive a new self-consistent Geostrophic Drag Law (GDL). We determine the ABL height (h) using an equilibrium boundary layer height model and parameterize the surface heat flux for quasi-steady SBL flows as a function of a prescribed surface temperature cooling rate. The ABL height and GDL equations can then be solved together to obtain the friction velocity (u∗) and the cross-isobaric angle (α0) as a function of known input parameters such as the Geostrophic wind speed and surface roughness (z0). We show that the model predictions agree well with simulation data from the literature and newly generated Large Eddy Simulations (LES). These results indicate that the proposed model provides an efficient and relatively accurate self-consistent approach for predicting the mean wind velocity distribution in CNBL and SBL flows. 
    more » « less
  4. The surface wind structure and vertical turbulent transport processes in the eyewall of hurricane Isabel (2003) are investigated using six large-eddy simulations (LESs) with different horizontal grid spacing and three-dimensional (3D) sub-grid scale (SGS) turbulent mixing models and a convection permitting simulation that uses a coarser grid spacing and one-dimensional vertical turbulent mixing scheme. The mean radius-height distribution of storm tangential wind and radial flow, vertical velocity structure, and turbulent kinetic energy and momentum fluxes in the boundary layer generated by LESs are consistent with those derived from historical dropsonde composites, Doppler radar, and aircraft measurements. Unlike the convection permitting simulation that produces storm wind fields lacking small-scale disturbances, all LESs are able to produce sub-kilometer and kilometer scale eddy circulations in the eyewall. The inter-LES differences generally reduce with the decrease of model grid spacing. At 100-m horizontal grid spacing, the vertical momentum fluxes induced by the model-resolved eddies and the associated eddy exchange coefficients in the eyewall simulated by the LESs with different 3D SGS mixing schemes are fairly consistent. Although with uncertainties, the decomposition in terms of eddy scales suggests that sub-kilometer eddies are mainly responsible for the vertical turbulent transport within the boundary layer (~1 km depth following the conventional definition) whereas eddies greater than 1 km become the dominant contributors to the vertical momentum transport above the boundary layer in the eyewall. The strong dependence of vertical turbulent transport on eddy scales suggests that the vertical turbulent mixing parameterization in mesoscale simulations of tropical cyclones is ultimately a scale-sensitive problem. 
    more » « less
  5. As turbines continue to grow in hub height and rotor diameter and wind farms grow larger, consideration of stratified atmospheric boundary layer (ABL) processes in wind power models becomes increasingly important. Atmospheric stratification can considerably alter the boundary layer structure and flow characteristics through buoyant forcing. Variations in buoyancy, and corresponding ABL stability, in both space and time impact ABL wind speed shear, wind direction shear, boundary layer height, turbulence kinetic energy, and turbulence intensity. In addition, the presence of stratification will result in a direct buoyant forcing within the wake region. These ABL mechanisms affect turbine power production, the momentum and kinetic energy deficit wakes generated by turbines, and the turbulent mixing and kinetic energy entrainment in wind farms. Presently, state-of-practice engineering models of mean wake momentum utilize highly empirical turbulence models that do not explicitly account for ABL stability. Models also often neglect the interaction between the wake momentum deficit and the turbulence kinetic energy added by the wake, which depends on stratification. In this work, we develop a turbulence model that models the wake-added turbulence kinetic energy, and we couple it with a wake model based on the parabolized Reynolds-averaged Navier–Stokes equations. Comparing the model predictions to large eddy simulations across stabilities (Obukhov lengths) and surface roughness lengths, we find lower prediction error in both power production and the wake velocity field across the ABL conditions and error metrics investigated. 
    more » « less