Stably stratified roughness sublayer flows are ubiquitous yet remain difficult to represent in models and to interpret using field experiments. Here, continuous high‐frequency potential temperature profiles from the forest floor up to 6.5 times the canopy height observed with distributed temperature sensing (DTS) are used to link eddy topology to roughness sublayer stability correction functions and coupling between air layers within and above the canopy. The experiments are conducted at two forest stands classified as hydrodynamically sparse and dense. Near‐continuous profiles of eddy sizes (length scales) and effective mixing lengths for heat are derived from the observed profiles using a novel conditional sampling approach. The approach utilizes potential temperature isoline fluctuations from a statically stable background state. The transport of potential temperature by an observed eddy is assumed to be conserved (adiabatic movement) and we assume that irreversible heat exchange between the eddy and the surrounding background occurs along the (vertical) periphery of the eddy. This assumption is analogous to Prandtl's mixing‐length concept, where momentum is transported rapidly vertically and then equilibrated with the local mean velocity gradient. A distinct dependence of the derived length scales on background stratification, height above ground, and canopy characteristics emerges from the observed profiles. Implications of these findings for (1) the failure of Monin–Obukhov similarity in the roughness sublayer and (2) above‐canopy flow coupling to the forest floor are examined. The findings have practical applications in terms of analysing similar DTS data sets with the proposed approach, modelling roughness sublayer flows, and interpreting nocturnal eddy covariance measurements above tall forested canopies.
more »
« less
Turbulence Organization and Mean Profile Shapes in the Stably Stratified Boundary Layer: Zones of Uniform Momentum and Air Temperature
Abstract A persistent spatial organization of eddies is identified in the lowest portion of the stably stratified planetary boundary layer. The analysis uses flow realizations from published large-eddy simulations (Sullivan et al. in J Atmos Sci 73(4):1815–1840, 2016) ranging in stability from near-neutral to almost z-less stratification. The coherent turbulent structure is well approximated as a series of uniform momentum zones (UMZs) and uniform temperature zones (UTZs) separated by thin layers of intense gradients that are significantly greater than the mean. This pattern yields stairstep-like instantaneous flow profiles whose shape is distinct from the mean profiles that emerge from long-term averaging. However, the scaling of the stairstep organization is closely related to the resulting mean profiles. The differences in velocity and temperature across the thin gradient layers remain proportional to the surface momentum and heat flux conditions regardless of stratification. The vertical thickness of UMZs and UTZs is proportional to height above the surface for near-neutral and weak stratification, but becomes thinner and less dependent on height as the stability increases. Deviations from the logarithmic mean profiles for velocity and temperature observed under neutral conditions are therefore predominately due to the reduction in eddy size with increasing stratification, which is empirically captured by existing Monin–Obukhov similarity relations for momentum and heat. The zone properties are additionally used to explain trends in the turbulent Prandtl number, thus providing a connection between the eddy organization, mean profiles, and turbulent diffusivity in stably stratified conditions.
more »
« less
- Award ID(s):
- 2031312
- PAR ID:
- 10386450
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Boundary-Layer Meteorology
- Volume:
- 186
- Issue:
- 3
- ISSN:
- 0006-8314
- Page Range / eLocation ID:
- p. 533-565
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Stochastically generated instantaneous velocity profiles are used to reproduce the outer region of rough-wall turbulent boundary layers in a range of Reynolds numbers extending from the wind tunnel to field conditions. Each profile consists in a sequence of steps, defined by the modal velocities and representing uniform momentum zones (UMZs), separated by velocity jumps representing the internal shear layers. Height-dependent UMZ is described by a minimal set of attributes: thickness, mid-height elevation, and streamwise (modal) and vertical velocities. These are informed by experimental observations and reproducing the statistical behaviour of rough-wall turbulence and attached eddy scaling, consistent with the corresponding experimental datasets. Sets of independently generated profiles are reorganized in the streamwise direction to form a spatially consistent modal velocity field, starting from any randomly selected profile. The operation allows one to stretch or compress the velocity field in space, increases the size of the domain and adjusts the size of the largest emerging structures to the Reynolds number of the simulated flow. By imposing the autocorrelation function of the modal velocity field to be anchored on the experimental measurements, we obtain a physically based spatial resolution, which is employed in the computation of the velocity spectrum, and second-order structure functions. The results reproduce the Kolmogorov inertial range extending from the UMZ and their attached-eddy vertical organization to the very-large-scale motions (VLSMs) introduced with the reordering process. The dynamic role of VLSM is confirmed in the$$-u^{\prime }w^{\prime }$$co-spectra and in their vertical derivative, representing a scale-dependent pressure gradient contribution.more » « less
-
Understanding Physical Processes Represented by the Monin–Obukhov Bulk Formula for Momentum Transfernull (Ed.)Abstract Physical processes represented by the Monin–Obukhov bulk formula for momentum are investigated with field observations. We discuss important differences between turbulent mixing by the most energetic non-local, large, coherent turbulence eddies and local turbulent mixing as traditionally represented by K-theory (analog to molecular diffusion), especially in consideration of developing surface-layer stratification. The study indicates that the neutral state in a horizontally homogeneous surface layer described in the Monin–Obukhov bulk formula represents a special neutrality regardless of wind speed, for example, the surface layer with no surface heating/cooling. Under this situation, the Monin–Obukhov bulk formula agrees well with observations for heights to at least 30 m. As the surface layer is stratified, stably or unstably, the neutral state is achieved by mechanically generated turbulent mixing through the most energetic non-local coherent eddies. The observed neutral relationship between $$u_*$$ u ∗ (the square root of the momentum flux magnitude) and wind speed V at any height is different from that described by the Monin–Obukhov formula except within several metres of the surface. The deviation of the Monin–Obukhov neutral $$u_*-V$$ u ∗ - V linear relation from the observed one increases with height and contributes to the deteriorating performance of the bulk formula with increasing height, which cannot be compensated by stability functions. Based on these analyses, estimation of drag coefficients is discussed as well.more » « less
-
Abstract We took field observations on the shallow shoals of South San Francisco Bay to examine how sediment‐induced stratification affects the mean flow and mixing of momentum and sediment throughout the water column. A Vectrino Profiler measured near‐bed velocity and suspended sediment concentration profiles, which we used to calculate profiles of turbulent sediment and momentum fluxes. Additional turbulence statistics were calculated using data from acoustic Doppler velocimeters placed throughout the water column. Results showed that sediment‐induced stratification, which was set up by strong near‐bed wave shear, can reduce the frictional bottom drag felt by the mean flow. Measured turbulence statistics suggest that this drag reduction is caused by stratification suppressing near‐bed turbulent fluxes and reducing turbulent kinetic energy dissipation. Turbulent sediment fluxes, however, were not shown to be limited by sediment‐induced stratification. Finally, we compared our results to a common model parameterization which characterizes stratification through a stability parameter modification to the turbulent eddy viscosity and suggest a new nondimensional parameter that may be better suited to represent stratification when modeling oscillatory boundary layer flows.more » « less
-
Earth’s magnetic field is generated by turbulent motion in its fluid outer core. Although the bulk of the outer core is vigorously convecting and well mixed, some seismic, geomagnetic and geodynamic evidence suggests that a global stably stratified layer exists at the top of Earth’s core. Such a layer would strongly influence thermal, chemical and momentum exchange across the core–mantle boundary and thus have important implications for the dynamics and evolution of the core. Here we argue that the relevant scenario is not global stratification, but rather regional stratification arising solely from the lateral variations in heat flux at the core–mantle boundary. Using our extensive suite of numerical simulations of the dynamics of the fluid core with het- erogeneous core–mantle boundary heat flux, we predict that thermal regional inversion layers extend hundreds of kilometres into the core under anomalously hot regions of the lowermost mantle. Although the majority of the outermost core remains actively convecting, sufficiently large and strong regional inversion layers produce a one-dimensional temperature profile that mimics a globally stratified layer below the core–mantle boundary—an apparent thermal stratification despite the average heat flux across the core–mantle boundary being strongly superadiabatic.more » « less