skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00PM ET on Friday, December 15 until 2:00 AM ET on Saturday, December 16 due to maintenance. We apologize for the inconvenience.

Title: Turbulence Organization and Mean Profile Shapes in the Stably Stratified Boundary Layer: Zones of Uniform Momentum and Air Temperature

A persistent spatial organization of eddies is identified in the lowest portion of the stably stratified planetary boundary layer. The analysis uses flow realizations from published large-eddy simulations (Sullivan et al. in J Atmos Sci 73(4):1815–1840, 2016) ranging in stability from near-neutral to almost z-less stratification. The coherent turbulent structure is well approximated as a series of uniform momentum zones (UMZs) and uniform temperature zones (UTZs) separated by thin layers of intense gradients that are significantly greater than the mean. This pattern yields stairstep-like instantaneous flow profiles whose shape is distinct from the mean profiles that emerge from long-term averaging. However, the scaling of the stairstep organization is closely related to the resulting mean profiles. The differences in velocity and temperature across the thin gradient layers remain proportional to the surface momentum and heat flux conditions regardless of stratification. The vertical thickness of UMZs and UTZs is proportional to height above the surface for near-neutral and weak stratification, but becomes thinner and less dependent on height as the stability increases. Deviations from the logarithmic mean profiles for velocity and temperature observed under neutral conditions are therefore predominately due to the reduction in eddy size with increasing stratification, which is empirically captured by existing Monin–Obukhov similarity relations for momentum and heat. The zone properties are additionally used to explain trends in the turbulent Prandtl number, thus providing a connection between the eddy organization, mean profiles, and turbulent diffusivity in stably stratified conditions.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Boundary-Layer Meteorology
Page Range / eLocation ID:
p. 533-565
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stably stratified roughness sublayer flows are ubiquitous yet remain difficult to represent in models and to interpret using field experiments. Here, continuous high‐frequency potential temperature profiles from the forest floor up to 6.5 times the canopy height observed with distributed temperature sensing (DTS) are used to link eddy topology to roughness sublayer stability correction functions and coupling between air layers within and above the canopy. The experiments are conducted at two forest stands classified as hydrodynamically sparse and dense. Near‐continuous profiles of eddy sizes (length scales) and effective mixing lengths for heat are derived from the observed profiles using a novel conditional sampling approach. The approach utilizes potential temperature isoline fluctuations from a statically stable background state. The transport of potential temperature by an observed eddy is assumed to be conserved (adiabatic movement) and we assume that irreversible heat exchange between the eddy and the surrounding background occurs along the (vertical) periphery of the eddy. This assumption is analogous to Prandtl's mixing‐length concept, where momentum is transported rapidly vertically and then equilibrated with the local mean velocity gradient. A distinct dependence of the derived length scales on background stratification, height above ground, and canopy characteristics emerges from the observed profiles. Implications of these findings for (1) the failure of Monin–Obukhov similarity in the roughness sublayer and (2) above‐canopy flow coupling to the forest floor are examined. The findings have practical applications in terms of analysing similar DTS data sets with the proposed approach, modelling roughness sublayer flows, and interpreting nocturnal eddy covariance measurements above tall forested canopies. 
    more » « less
  2. Abstract

    We took field observations on the shallow shoals of South San Francisco Bay to examine how sediment‐induced stratification affects the mean flow and mixing of momentum and sediment throughout the water column. A Vectrino Profiler measured near‐bed velocity and suspended sediment concentration profiles, which we used to calculate profiles of turbulent sediment and momentum fluxes. Additional turbulence statistics were calculated using data from acoustic Doppler velocimeters placed throughout the water column. Results showed that sediment‐induced stratification, which was set up by strong near‐bed wave shear, can reduce the frictional bottom drag felt by the mean flow. Measured turbulence statistics suggest that this drag reduction is caused by stratification suppressing near‐bed turbulent fluxes and reducing turbulent kinetic energy dissipation. Turbulent sediment fluxes, however, were not shown to be limited by sediment‐induced stratification. Finally, we compared our results to a common model parameterization which characterizes stratification through a stability parameter modification to the turbulent eddy viscosity and suggest a new nondimensional parameter that may be better suited to represent stratification when modeling oscillatory boundary layer flows.

    more » « less
  3. Baroclinicity adds another layer of complexity to the much-studied barotropic atmospheric boundary layers (ABLs) by modulating the pressure gradient in height. Despite the prevalence of baroclinicity in real-world ABLs, our knowledge of the interacting effects of baroclinicity and atmospheric stability is limited. In this talk, we aim to address this knowledge gap by systematically varying baroclinicity and stability using the large-eddy simulation (LES) technique. We will present how baroclinicity alters the friction velocity, Obukhov length, shear production, ABL height, and low-level jet (LLJ) in diabatic baroclinic atmospheric flows. It will be shown that while baroclinicity significantly impacts unstable, neutral, and weakly stable ABLs, its effects reduce with increased stratification in the ABL. In strongly stratified ABLs, the LLJ height, friction velocity, and Obukhov length converge to a constant asymptote independent of the baroclinicity regime. We will demonstrate that this behavior is attributed to the strong turbulence destruction in very stable ABLs that decouples the surface from higher elevations where baroclinicity is more important. Finally, two rescaling methods in the inner and outer layers of stable baroclinic ABLs will be presented to non-dimensionalize and collapse the wind profiles in baroclinic environments. The developed reduced model for different baroclinic wind profiles will be shown against the LES results. The findings of this research elucidate the underlying physics of baroclinic diabatic ABLs and are useful for characterizing the wind profiles in weather/climate models, field measurements, and various industrial applications. 
    more » « less
  4. null (Ed.)
    Abstract Physical processes represented by the Monin–Obukhov bulk formula for momentum are investigated with field observations. We discuss important differences between turbulent mixing by the most energetic non-local, large, coherent turbulence eddies and local turbulent mixing as traditionally represented by K-theory (analog to molecular diffusion), especially in consideration of developing surface-layer stratification. The study indicates that the neutral state in a horizontally homogeneous surface layer described in the Monin–Obukhov bulk formula represents a special neutrality regardless of wind speed, for example, the surface layer with no surface heating/cooling. Under this situation, the Monin–Obukhov bulk formula agrees well with observations for heights to at least 30 m. As the surface layer is stratified, stably or unstably, the neutral state is achieved by mechanically generated turbulent mixing through the most energetic non-local coherent eddies. The observed neutral relationship between $$u_*$$ u ∗ (the square root of the momentum flux magnitude) and wind speed V at any height is different from that described by the Monin–Obukhov formula except within several metres of the surface. The deviation of the Monin–Obukhov neutral $$u_*-V$$ u ∗ - V linear relation from the observed one increases with height and contributes to the deteriorating performance of the bulk formula with increasing height, which cannot be compensated by stability functions. Based on these analyses, estimation of drag coefficients is discussed as well. 
    more » « less
  5. Abstract

    In this study we examined a data set of nearly two‐year collection and investigated the effects of low‐level jets (LLJ) on near‐surface turbulence, especially wind direction changes, in the nocturnal boundary layer. Typically, nocturnal boundary layer is thermally stratified and stable. When wind profiles exhibit low gradient (in the absence of LLJ), it is characterized by very weak turbulence and very large, abrupt, but intermittent wind direction changes (∆WD) in the layers near the surface. In contrast, presence of LLJs can cause dramatic changes through inducing wind velocity shears, enhancing vertical mixing, and weakening the thermal stratification underneath. Ultimately, bulk Richardson number (Rb) is reduced and weakly stable conditions prevail, leading to active turbulence, close coupling across the layers between the LLJ height and ground surface, relatively large vertical momentum and sensible heat fluxes, and suppressed ∆WD values.Rbcan be a useful parameter in assessing turbulence strength and ∆WD as well. The dependence of ∆WD onRbappears to be well defined under weakly stable conditions (0.0 < Rb ≤ 0.25) and ∆WD is generally confined to small values. However, the relationship between ΔWD andRbbreaks whenRbincreases, especiallyRb > 1.0 (very stable conditions), under which ΔWD varies across a very wide range and the potential for large ΔWD increases greatly. Our findings have provided important implications to the plume dispersion in the nocturnal boundary layers.

    more » « less