skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nonviral Vehicles for Gene Delivery
Nonviral gene delivery (NVGD) is an appealing alternative to viral gene delivery for clinical applications due to its lower cost and increased safety. A variety of promising nonviral vectors are under development, including cationic polymers, lipids, lipid-polymer hybrids (LPHs) and inorganic nanoparticles. However, some NVGD strategies have disadvantages that have limited their adoption, including high toxicity and low efficiency. This review focuses on the most common NVGD vehicles with an emphasis on recent developments in the field.  more » « less
Award ID(s):
1651837
PAR ID:
10290613
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nano LIFE
Volume:
11
Issue:
02
ISSN:
1793-9844
Page Range / eLocation ID:
2130002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Background Human mesenchymal stem cells (hMSCs) are intensely researched for applications in cell therapeutics due to their unique properties, however, intrinsic therapeutic properties of hMSCs could be enhanced by genetic modification. Viral transduction is efficient, but suffers from safety issues. Conversely, nonviral gene delivery, while safer compared to viral, suffers from inefficiency and cytotoxicity, especially in hMSCs. To address the shortcomings of nonviral gene delivery to hMSCs, our lab has previously demonstrated that pharmacological ‘priming’ of hMSCs with the glucocorticoid dexamethasone can significantly increase transfection in hMSCs by modulating transfection-induced cytotoxicity. This work seeks to establish a library of transfection priming compounds for hMSCs by screening 707 FDA-approved drugs, belonging to diverse drug classes, from the NIH Clinical Collection at four concentrations for their ability to modulate nonviral gene delivery to adipose-derived hMSCs from two human donors. Results Microscope images of cells transfected with a fluorescent transgene were analyzed in order to identify compounds that significantly affected hMSC transfection without significant toxicity. Compound classes that increased transfection across both donors included glucocorticoids, antibiotics, and antihypertensives. Notably, clobetasol propionate, a glucocorticoid, increased transgene production 18-fold over unprimed transfection. Furthermore, compound classes that decreased transfection across both donors included flavonoids, antibiotics, and antihypertensives, with the flavonoid epigallocatechin gallate decreasing transgene production − 41-fold compared to unprimed transfection. Conclusions Our screen of the NCC is the first high-throughput and drug-repurposing approach to identify nonviral gene delivery priming compounds in two donors of hMSCs. Priming compounds and classes identified in this screen suggest that modulation of proliferation, mitochondrial function, and apoptosis is vital for enhancing nonviral gene delivery to hMSCs. 
    more » « less
  2. Abstract Retroviral gene delivery is widely used in T cell therapies for hematological cancers. However, viral vectors are expensive to manufacture, integrate genes in semirandom patterns, and their transduction efficiency varies between patients. In this study, several nonviral gene delivery vehicles, promoters, and additional variables were compared to optimize nonviral transgene delivery and expression in both Jurkat and primary T cells. Transfection of Jurkat cells was maximized to a high efficiency (63.0% ± 10.9% EGFP+ cells) by transfecting cells with Lipofectamine LTX in X‐VIVO 15 media. However, the same method yielded a much lower transfection efficiency in primary T cells (8.1% ± 0.8% EGFP+). Subsequent confocal microscopy revealed that a majority of the lipoplexes did not enter the primary T cells, which might be due to relatively low expression levels of heparan sulfate proteoglycans detected via messenger RNA‐sequencing. Pyrin and HIN (PYHIN) DNA sensors (e.g., AIM2 and IFI16) that can induce apoptosis or repress transcription after binding cytoplasmic DNA were also detected at high levels in primary T cells. Therefore, transfection of primary T cells appears to be limited at the level of cellular uptake or DNA sensing in the cytoplasm. Both of these factors should be considered in the development of future viral and nonviral T cell gene delivery methods. 
    more » « less
  3. null (Ed.)
    The recent discovery and subsequent development of the CRISPR–Cas9 (clustered regularly interspaced short palindromic repeat–CRISPR-associated protein 9) platform as a precise genome editing tool have transformed biomedicine. As these CRISPR-based tools have matured, multiple stages of the gene editing process and the bioengineering of human cells and tissues have advanced. Here, we highlight recent intersections in the development of biomaterials and genome editing technologies. These intersections include the delivery of macromolecules, where biomaterial platforms have been harnessed to enable nonviral delivery of genome engineering tools to cells and tissues in vivo. Further, engineering native-like biomaterial platforms for cell culture facilitates complex modeling of human development and disease when combined with genome engineering tools. Deeper integration of biomaterial platforms in these fields could play a significant role in enabling new breakthroughs in the application of gene editing for the treatment of human disease. 
    more » « less
  4. Abstract Lipid nanoparticles (LNPs) have emerged as the preeminent nonviral drug delivery vehicles for nucleic acid therapeutics, as exemplified by their usage in the mRNA COVID‐19 vaccines. As a safe and highly modular delivery platform, LNPs are attractive for a wide range of applications. In addition to vaccines, LNPs are being utilized as platforms for other immunoengineering efforts, especially as cancer immunotherapies by modulating immune cells and their functionality via nucleic acid delivery. In this review, we focus on the methods and applications of LNP‐based immunotherapy in five cell types: T cells, NK cells, macrophages, stem cells, and dendritic cells. Each of these cell types has wide‐reaching applications in immunotherapy but comes with unique challenges and delivery barriers. By combining knowledge of immunology and nanotechnology, LNPs can be developed for improved immune cell targeting and transfection, ultimately working toward novel clinical therapeutics. 
    more » « less
  5. Gene silencing guided by small RNAs governs a broad range of cellular processes in eukaryotes. Small RNAs are important components of plant immunity because they contribute to pathogen-triggered transcription reprogramming and directly target pathogen RNAs. Recent research suggests that silencing of pathogen genes by plant small RNAs occurs not only during viral infection but also in nonviral pathogens through a process termed host-induced gene silencing, which involves trans-species small RNA trafficking. Similarly, small RNAs are also produced by eukaryotic pathogens and regulate virulence. This review summarizes the small RNA pathways in both plants and filamentous pathogens, including fungi and oomycetes, and discusses their role in host–pathogen interactions. We highlight secondarysmall interfering RNAs of plants as regulators of immune receptor gene expression and executors of host-induced gene silencing in invading pathogens. The current status and prospects of trans-species gene silencing at the host–pathogen interface are discussed. 
    more » « less