skip to main content


Title: Studying Shared Regulation in Immersive Learning Environments
We examined the regulation of shared problem solving in a museum exhibit. We found that we had to augment our dialogue codes to properly embrace the dynamic nature of the observed learning regulation. These changes reflect aspects of shared regulation that occur when learning takes place (1) in an immersive open-ended learning environment, where (2) learners work together in large groups. We present preliminary results, arguing that designers and researchers may benefit from recognizing how planning and evaluation acts can be tactically embedded in immersive learning environments.  more » « less
Award ID(s):
1822864
NSF-PAR ID:
10290703
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 14th International Conference on Computer-Supported Collaborative Learning - CSCL 2021
Page Range / eLocation ID:
291-292
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Most engineering ethics education is segregated into particular courses that, from a student’s perspective, can feel disconnected from the technical education at the center of their programs. In part because of this disconnect, several immersive programs designed to train engineering students in socio-technical systems thinking have emerged in the U.S. in the past two decades. One pedagogical goal of these programs is to provide alternative ideologies and practices that counter dominant cultural paradigms that marginalize macroethical thinking and social justice perspectives in engineering schools. In theory, longer-term immersion in such programs can help students overcome these harmful ideologies. However, because of the difficult nature of studying cultural change, very few studies have attempted to provide a thick description of how these alternative cultural practices are influencing student perspectives on engineering practices. Our study offers a rare glimpse at student uptake of these practices in a multi-year Science, Technology, and Society (STS) living-learning program. Our study explores whether and how cultural practices within an STS program help students develop and sustain the resources for using a socio-technical systems thinking approach to engineering practice. We grounded our work in a cultural practices framework from Nasir and Kirshner [1] which roughly understands practice to be “a patterned set of actions performed by members of a group based on common purposes and expectations, with shared cultural values, tools, and meanings” ([2, p. 99] as cited in [3]). Our descriptions of collective enactments of cultural practices are grounded in accounts of classroom events from researcher fieldnotes and reflections in student interviews. Looking across the enactment of practices in classrooms and students’ interpretations of these events in interviews allows us to describe the multiplicity of meanings that students distill from these activities. This paper will present on multiple cultural practices salient to students we have identified in this STS community, for example: cultivating an ethics of care, making the invisible visible, understanding systems from multiple perspectives, and empowering students to develop moral stances as citizens and scientists/engineers in society. Because of the complexity of the interplay between the scaffolding of the STS program’s pedagogy and the emergence of these four themes, we chose to center “cultivating an ethics of care” in this analysis and relationally explore the other three themes through it. Ethics of care manifests in two basic ways in the data. Students talk about how an ethics of care is part of the STS program community and how the STS program fosters the need for an ethics of care toward communities outside the classroom through human-centered engineering design. 
    more » « less
  2. During a natural disaster such as hurricane, earth- quake, or fire, robots have the potential to explore vast areas and provide valuable aid in search & rescue efforts. These scenar- ios are often high-pressure and time-critical with dynamically- changing task goals. One limitation to these large scale deploy- ments is effective human-robot interaction. Prior work shows that collaboration between one human and one robot benefits from shared control. Here we evaluate the efficacy of shared control for human-swarm teaming in an immersive virtual reality environment. Although there are many human-swarm interaction paradigms, few are evaluated in high-pressure settings representative of their intended end use. We have developed an open-source virtual reality testbed for realistic evaluation of human-swarm teaming performance under pressure. We conduct a user study (n=16) comparing four human-swarm paradigms to a baseline condition with no robotic assistance. Shared control significantly reduces the number of instructions needed to operate the robots. While shared control leads to marginally improved team performance in experienced participants, novices perform best when the robots are fully autonomous. Our experimental results suggest that in immersive, high-pressure settings, the benefits of robotic assistance may depend on how the human and robots interact and the human operator’s expertise. 
    more » « less
  3. INTRODUCTION Diverse phenotypes, including large brains relative to body size, group living, and vocal learning ability, have evolved multiple times throughout mammalian history. These shared phenotypes may have arisen repeatedly by means of common mechanisms discernible through genome comparisons. RATIONALE Protein-coding sequence differences have failed to fully explain the evolution of multiple mammalian phenotypes. This suggests that these phenotypes have evolved at least in part through changes in gene expression, meaning that their differences across species may be caused by differences in genome sequence at enhancer regions that control gene expression in specific tissues and cell types. Yet the enhancers involved in phenotype evolution are largely unknown. Sequence conservation–based approaches for identifying such enhancers are limited because enhancer activity can be conserved even when the individual nucleotides within the sequence are poorly conserved. This is due to an overwhelming number of cases where nucleotides turn over at a high rate, but a similar combination of transcription factor binding sites and other sequence features can be maintained across millions of years of evolution, allowing the function of the enhancer to be conserved in a particular cell type or tissue. Experimentally measuring the function of orthologous enhancers across dozens of species is currently infeasible, but new machine learning methods make it possible to make reliable sequence-based predictions of enhancer function across species in specific tissues and cell types. RESULTS To overcome the limits of studying individual nucleotides, we developed the Tissue-Aware Conservation Inference Toolkit (TACIT). Rather than measuring the extent to which individual nucleotides are conserved across a region, TACIT uses machine learning to test whether the function of a given part of the genome is likely to be conserved. More specifically, convolutional neural networks learn the tissue- or cell type–specific regulatory code connecting genome sequence to enhancer activity using candidate enhancers identified from only a few species. This approach allows us to accurately associate differences between species in tissue or cell type–specific enhancer activity with genome sequence differences at enhancer orthologs. We then connect these predictions of enhancer function to phenotypes across hundreds of mammals in a way that accounts for species’ phylogenetic relatedness. We applied TACIT to identify candidate enhancers from motor cortex and parvalbumin neuron open chromatin data that are associated with brain size relative to body size, solitary living, and vocal learning across 222 mammals. Our results include the identification of multiple candidate enhancers associated with brain size relative to body size, several of which are located in linear or three-dimensional proximity to genes whose protein-coding mutations have been implicated in microcephaly or macrocephaly in humans. We also identified candidate enhancers associated with the evolution of solitary living near a gene implicated in separation anxiety and other enhancers associated with the evolution of vocal learning ability. We obtained distinct results for bulk motor cortex and parvalbumin neurons, demonstrating the value in applying TACIT to both bulk tissue and specific minority cell type populations. To facilitate future analyses of our results and applications of TACIT, we released predicted enhancer activity of >400,000 candidate enhancers in each of 222 mammals and their associations with the phenotypes we investigated. CONCLUSION TACIT leverages predicted enhancer activity conservation rather than nucleotide-level conservation to connect genetic sequence differences between species to phenotypes across large numbers of mammals. TACIT can be applied to any phenotype with enhancer activity data available from at least a few species in a relevant tissue or cell type and a whole-genome alignment available across dozens of species with substantial phenotypic variation. Although we developed TACIT for transcriptional enhancers, it could also be applied to genomic regions involved in other components of gene regulation, such as promoters and splicing enhancers and silencers. As the number of sequenced genomes grows, machine learning approaches such as TACIT have the potential to help make sense of how conservation of, or changes in, subtle genome patterns can help explain phenotype evolution. Tissue-Aware Conservation Inference Toolkit (TACIT) associates genetic differences between species with phenotypes. TACIT works by generating open chromatin data from a few species in a tissue related to a phenotype, using the sequences underlying open and closed chromatin regions to train a machine learning model for predicting tissue-specific open chromatin and associating open chromatin predictions across dozens of mammals with the phenotype. [Species silhouettes are from PhyloPic] 
    more » « less
  4. Recent advances in deep learning have shown many successful stories in smart healthcare applications with data-driven insight into improving clinical institutions’ quality of care. Excellent deep learning models are heavily data-driven. The more data trained, the more robust and more generalizable the performance of the deep learning model. However, pooling the medical data into centralized storage to train a robust deep learning model faces privacy, ownership, and strict regulation challenges. Federated learning resolves the previous challenges with a shared global deep learning model using a central aggregator server. At the same time, patient data remain with the local party, maintaining data anonymity and security. In this study, first, we provide a comprehensive, up-to-date review of research employing federated learning in healthcare applications. Second, we evaluate a set of recent challenges from a data-centric perspective in federated learning, such as data partitioning characteristics, data distributions, data protection mechanisms, and benchmark datasets. Finally, we point out several potential challenges and future research directions in healthcare applications. 
    more » « less
  5. Socially shared regulation (SSRL) has been recognized as a contributing factor to successful collaborative learning. In this paper, we adopted a process-oriented approach to examine how students deliberate for SSRL through different regulatory triggers in a collaborative learning context. More specifically, this study examines the relationship between different types of regulatory and deliberative characteristics of interactions and then explores their sequential patterns through cognitive and emotional triggers. The study involved ten triads of secondary students (N=30) working on a collaborative learning task. The process mining results showed that following regulatory triggers, groups switched to more metacognitive and socio-emotional interactions as they adopted control strategies, such as defining problems, establishing strategies, and providing social support. This study not only contributes to a better understanding of SSRL by exploring learners’ deliberative negotiation but also presents a novel fine-grain video analysis approach to examine SSRL in collaborative learning. 
    more » « less