skip to main content


Title: ITrackU: tracking a pen-like instrument via UWB-IMU fusion
High-precision tracking of a pen-like instrument's movements is desirable in a wide range of fields spanning education, robotics, and art, to name a few. The key challenge in doing so stems from the impracticality of embedding electronics in the tip of such instruments (a pen, marker, scalpel, etc.) as well as the difficulties in instrumenting the surface that it works on. In this paper, we present ITrackU, a movement digitization system that does not require modifications to the surface or the tracked instrument's tip. ITrackU fuses locations obtained using ultra-wideband radios (UWB), with an inertial and magnetic unit (IMU) and a pressure sensor, yielding multidimensional improvements in accuracy, range, cost, and robustness, over existing works. ITrackU embeds a micro-transmitter at the base of a pen which creates a trackable beacon, that is localized from the corners of a writing surface. Fused with inertial motion sensor and a pressure sensor, ITrackU enables accurate tracking. Our prototype of ITrackU covers a large 2.5m × 2m area, while obtaining around 2.9mm median error. We demonstrate the accuracy of our system by drawing numerous shapes and characters on a whiteboard, and compare them against a touchscreen and a camera-based ground-truthing system. Finally, the produced stream of digitized data is minuscule in volume, when compared with a video of the whiteboard, which saves both network bandwidth and storage space.  more » « less
Award ID(s):
2031868
NSF-PAR ID:
10290738
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
MobiSys '21: Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services
Page Range / eLocation ID:
453 to 466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents SVIn2, a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system, which fuses Scanning Profiling Sonar, Visual, Inertial, and water-pressure information in a non-linear optimization framework for small and large scale challenging underwater environments. The developed real-time system features robust initialization, loop-closing, and relocalization capabilities, which make the system reliable in the presence of haze, blurriness, low light, and lighting variations, typically observed in underwater scenarios. Over the last decade, Visual-Inertial Odometry and SLAM systems have shown excellent performance for mobile robots in indoor and outdoor environments, but often fail underwater due to the inherent difficulties in such environments. Our approach combats the weaknesses of previous approaches by utilizing additional sensors and exploiting their complementary characteristics. In particular, we use (1) acoustic range information for improved reconstruction and localization, thanks to the reliable distance measurement; (2) depth information from water-pressure sensor for robust initialization, refining the scale, and assisting to limit the drift in the tightly-coupled integration. The developed software—made open source—has been successfully used to test and validate the proposed system in both benchmark datasets and numerous real world underwater scenarios, including datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle Aqua2. SVIn2 demonstrated outstanding performance in terms of accuracy and robustness on those datasets and enabled other robotic tasks, for example, planning for underwater robots in presence of obstacles.

     
    more » « less
  2. Atomic force microscopes (AFMs) are used not only to image with nanometer-scale resolution, but also to nanofabricate structures on a surface using methods such as dip-pen nanolithography (DPN). DPN involves using the tip of the AFM to deposit a small amount of material on the surface. Typically, this process is done in open loop, leading to large variations in the amount of material transferred. One of the first steps to closing this loop is to be able to accurately and rapidly measure the amount of deposition. This can be done by measuring the change in the resonance frequency of the cantilever before and after a write as that shift is directly related to the change in mass on the cantilever. Currently, this is done using a thermal-based system identification, a technique which uses the natural Brownian excitation of the cantilever as a white noise excitation combined with a fast Fourier transform to extract a Bode plot. However, thermal-based techniques do not have a good signal to noise ratio at typical cantilever resonance frequencies and thus do not provide the needed resolution in the DPN application. Here we develop a scheme that iteratively uses a stepped-sine approach. At each step of the iteration, three frequencies close to the approximate location of the resonance are injected and used to fit a model of the magnitude of the transfer function. The identified peak is used to select three new frequencies in a smaller range in a binary search to reduce the uncertainty of the measured resonance peak location. The scheme is demonstrated through simulation and shown to produce an accuracy of better than 0.5 Hz on a cantilever with a 14 kHz resonance in a physically realistic noise scenario. 
    more » « less
  3. The objective of this research is to compare the effectiveness of different tracking devices underwater. There have been few works in aquatic virtual reality (VR) - i.e., VR systems that can be used in a real underwater environment. Moreover, the works that have been done have noted limitations on tracking accuracy. Our initial test results suggest that inertial measurement units work well underwater for orientation tracking but a different approach is needed for position tracking. Towards this goal, we have waterproofed and evaluated several consumer tracking systems intended for gaming to determine the most effective approaches. First, we informally tested infrared systems and fiducial marker based systems, which demonstrated significant limitations of optical approaches. Next, we quantitatively compared inertial measurement units (IMU) and a magnetic tracking system both above water (as a baseline) and underwater. By comparing the devices rotation data, we have discovered that the magnetic tracking system implemented by the Razer Hydra is more accurate underwater as compared to a phone-based IMU. This suggests that magnetic tracking systems should be further explored for underwater VR applications. 
    more » « less
  4. The objective of this research is to compare the effectiveness of various virtual reality tracking systems underwater. There have been few works in aquatic virtual reality (VR) - i.e., VR systems that can be used in a real underwater environment. Moreover, the works that have been done have noted limitations on tracking accuracy. Our initial test results suggest that inertial measurement units work well underwater for orientation tracking but a different approach is needed for position tracking. Towards this goal, we have waterproofed and evaluated several consumer tracking systems intended for gaming to determine the most effective approaches. First, we informally tested infrared systems and fiducial marker based systems, which demonstrated significant limitations of optical approaches. Next, we quantitatively compared inertial measurement units (IMU) and a magnetic tracking system both above water (as a baseline) and underwater. By comparing the devices' rotation data, we have discovered that the magnetic tracking system implemented by the Razer Hydra is approximately as accurate underwater as compared to a phone-based IMU. This suggests that magnetic tracking systems should be further explored as a possibility for underwater VR applications. 
    more » « less
  5. This paper presents ssLOTR (self-supervised learning on the rings), a system that shows the feasibility of designing self-supervised learning based techniques for 3D finger motion tracking using a custom-designed wearable inertial measurement unit (IMU) sensor with a minimal overhead of labeled training data. Ubiquitous finger motion tracking enables a number of applications in augmented and virtual reality, sign language recognition, rehabilitation healthcare, sports analytics, etc. However, unlike vision, there are no large-scale training datasets for developing robust machine learning (ML) models on wearable devices. ssLOTR designs ML models based on data augmentation and self-supervised learning to first extract efficient representations from raw IMU data without the need for any training labels. The extracted representations are further trained with small-scale labeled training data. In comparison to fully supervised learning, we show that only 15% of labeled training data is sufficient with self-supervised learning to achieve similar accuracy. Our sensor device is designed using a two-layer printed circuit board (PCB) to minimize the footprint and uses a combination of Polylactic acid (PLA) and Thermoplastic polyurethane (TPU) as housing materials for sturdiness and flexibility. It incorporates a system-on-chip (SoC) microcontroller with integrated WiFi/Bluetooth Low Energy (BLE) modules for real-time wireless communication, portability, and ubiquity. In contrast to gloves, our device is worn like rings on fingers, and therefore, does not impede dexterous finger motion. Extensive evaluation with 12 users depicts a 3D joint angle tracking accuracy of 9.07° (joint position accuracy of 6.55mm) with robustness to natural variation in sensor positions, wrist motion, etc, with low overhead in latency and power consumption on embedded platforms. 
    more » « less