- Award ID(s):
- 1648949
- Publication Date:
- NSF-PAR ID:
- 10039221
- Journal Name:
- Virtual Reality (VR), 2017 IEEE
- Page Range or eLocation-ID:
- 271 to 272
- Sponsoring Org:
- National Science Foundation
More Like this
-
The objective of this research is to compare the effectiveness of various virtual reality tracking systems underwater. There have been few works in aquatic virtual reality (VR) - i.e., VR systems that can be used in a real underwater environment. Moreover, the works that have been done have noted limitations on tracking accuracy. Our initial test results suggest that inertial measurement units work well underwater for orientation tracking but a different approach is needed for position tracking. Towards this goal, we have waterproofed and evaluated several consumer tracking systems intended for gaming to determine the most effective approaches. First, we informally tested infrared systems and fiducial marker based systems, which demonstrated significant limitations of optical approaches. Next, we quantitatively compared inertial measurement units (IMU) and a magnetic tracking system both above water (as a baseline) and underwater. By comparing the devices' rotation data, we have discovered that the magnetic tracking system implemented by the Razer Hydra is approximately as accurate underwater as compared to a phone-based IMU. This suggests that magnetic tracking systems should be further explored as a possibility for underwater VR applications.
-
This article reports an adaptive sensor bias observer and attitude observer operating directly on [Formula: see text] for true-north gyrocompass systems that utilize six-degree-of-freedom inertial measurement units (IMUs) with three-axis accelerometers and three-axis angular rate gyroscopes (without magnetometers). Most present-day low-cost robotic vehicles employ attitude estimation systems that employ microelectromechanical system (MEMS) magnetometers, angular rate gyros, and accelerometers to estimate magnetic attitude (roll, pitch, and magnetic heading) with limited heading accuracy. Present-day MEMS gyros are not sensitive enough to dynamically detect the Earth’s rotation, and thus cannot be used to estimate true-north geodetic heading. Relying on magnetic compasses can be problematic for vehicles that operate in environments with magnetic anomalies and those requiring high-accuracy navigation as the limited accuracy ([Formula: see text] error) of magnetic compasses is typically the largest error source in underwater vehicle navigation systems. Moreover, magnetic compasses need to undergo time-consuming recalibration for hard-iron and soft-iron errors every time a vehicle is reconfigured with a new instrument or other payload, as very frequently occurs on oceanographic marine vehicles. In contrast, the gyrocompass system reported herein utilizes fiber optic gyroscope (FOG) IMU angular rate gyro and MEMS accelerometer measurements (without magnetometers) to dynamically estimate the instrument’s time-varying true-northmore »
-
Underwater robots, including Remote Operating Vehicles (ROV) and Autonomous Underwater Vehicles (AUV), are currently used to support underwater missions that are either impossible or too risky to be performed by manned systems. In recent years the academia and robotic industry have paved paths for tackling technical challenges for ROV/AUV operations. The level of intelligence of ROV/AUV has increased dramatically because of the recent advances in low-power-consumption embedded computing devices and machine intelligence (e.g., AI). Nonetheless, operating precisely underwater is still extremely challenging to minimize human intervention due to the inherent challenges and uncertainties associated with the underwater environments. Proximity operations, especially those requiring precise manipulation, are still carried out by ROV systems that are fully controlled by a human pilot. A workplace-ready and worker-friendly ROV interface that properly simplifies operator control and increases remote operation confidence is the central challenge for the wide adaptation of ROVs.
This paper examines the recent advances of virtual telepresence technologies as a solution for lowering the barriers to the human-in-the-loop ROV teleoperation. Virtual telepresence refers to Virtual Reality (VR) related technologies that help a user to feel that they were in a hazardous situation without being present at the actual location. We present amore »
-
Abstract Lower limb joint kinematics have been measured in laboratory settings using fixed camera-based motion capture systems; however, recently inertial measurement units (IMUs) have been developed as an alternative. The purpose of this study was to test a quaternion conversion (QC) method for calculating the three orthogonal knee angles during the high velocities associated with a jump landing using commercially available IMUs. Nine cadaveric knee specimens were instrumented with APDM Opal IMUs to measure knee kinematics in one-legged 3–4× bodyweight simulated jump landings, four of which were used in establishing the parameters (training) for the new method and five for validation (testing). We compared the angles obtained from the QC method to those obtained from a commercially available sensor and algorithm (APDM Opal) with those calculated from an active marker motion capture system. Results showed a significant difference between both IMU methods and the motion capture data in the majority of orthogonal angles (p < 0.01), though the differences between the QC method and Certus system in the testing set for flexion and rotation angles were smaller than the APDM Opal algorithm, indicating an improvement. Additionally, in all three directions, both the limits of agreement and root-mean-square error between the QC methodmore »
-
High-precision tracking of a pen-like instrument's movements is desirable in a wide range of fields spanning education, robotics, and art, to name a few. The key challenge in doing so stems from the impracticality of embedding electronics in the tip of such instruments (a pen, marker, scalpel, etc.) as well as the difficulties in instrumenting the surface that it works on. In this paper, we present ITrackU, a movement digitization system that does not require modifications to the surface or the tracked instrument's tip. ITrackU fuses locations obtained using ultra-wideband radios (UWB), with an inertial and magnetic unit (IMU) and a pressure sensor, yielding multidimensional improvements in accuracy, range, cost, and robustness, over existing works. ITrackU embeds a micro-transmitter at the base of a pen which creates a trackable beacon, that is localized from the corners of a writing surface. Fused with inertial motion sensor and a pressure sensor, ITrackU enables accurate tracking. Our prototype of ITrackU covers a large 2.5m × 2m area, while obtaining around 2.9mm median error. We demonstrate the accuracy of our system by drawing numerous shapes and characters on a whiteboard, and compare them against a touchscreen and a camera-based ground-truthing system. Finally, the producedmore »