skip to main content


Title: Pneumatic Extension Actuators With Kirigami Skins
Soft pneumatic actuators have found many applications in robotics and adaptive structures. Traditionally, these actuators are constructed by wrapping layers of reinforcing helical fibers around an elastomeric tube. This approach is versatile and robust, but it suffers from a critical disadvantage: cumbersome fabrication procedures. Wrapping long helical filaments around a cylindrical tube requires expensive equipment or excessive manual labor. To address this issue, we propose a new approach towards designing and constructing pneumatic actuators by exploiting the principle of kirigami, the ancient art of paper cutting. More specifically, we use “kirigami skins” — plastic sleeves with carefully arranged slit cuts — to replace the reinforcing helical fibers. This paper presents an initial investigation on a set of linear extension actuators featuring kirigami skins with a uniform array of cross-shaped, orthogonal cuts. When under internal pressurization, the rectangular-shaped facets defined by these cuts can rotate and induce the desired extension motion. Through extensive experiments, we analyze the elastic and plastic deformations of these kirigami skins alone under tension. The results show strongly nonlinear behaviors involving both in-plane facet rotation the out-of-plane buckling. Such a deformation pattern offers valuable insights into the actuator’s performance under pressure. Moreover, both the deformation characteristics and actuation performance are “programmable” by tailoring the cut geometry. This study lays down the foundation for constructing more capable Kirigami-skinned soft actuators that can achieve sophisticated motions.  more » « less
Award ID(s):
1933124 1760943 1751449
NSF-PAR ID:
10290811
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
Page Range / eLocation ID:
V001T08A001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Soft pneumatic actuators have become indispensable for many robotic applications due to their reliability, safety, and design flexibility. However, the currently available actuator designs can be challenging to fabricate, requiring labor-intensive and time-consuming processes like reinforcing fiber wrapping and elastomer curing. To address this issue, we propose to use simple-to-fabricate kirigami skins—plastic sleeves with carefully arranged slit cuts—to construct pneumatic actuators with pre-programmable motion capabilities. Such kirigami skin, wrapped outside a cylindrical balloon, can transform the volumetric expansion from pneumatic pressure into anisotropic stretching and shearing, creating a combination of axial extension and twisting in the actuator. Moreover, the kirigami skin exhibits out-of-plane buckling near the slit cut, which enables high stretchability. To capture such complex deformations, we formulate and experimentally validates a new kinematics model to uncover the linkage between the kirigami cutting pattern design and the actuator’s motion characteristics. This model uses a virtual fold and rigid-facet assumption to simplify the motion analysis without sacrificing accuracy. Moreover, we tested the pressure-stroke performance and elastoplastic behaviors of the kirigami-skinned actuator to establish an operation protocol for repeatable performance. Analytical and experimental parametric analysis shows that one can effectively pre-program the actuator’s motion performance, with considerable freedom, simply by adjusting the angle and length of the slit cuts. The results of this study can establish the design and analysis framework for a new family of kirigami-skinned pneumatic actuators for many robotic applications. 
    more » « less
  2. The locomotion of soft snake robots is dependent on frictional interactions with the environment. Frictional anisotropy is a morphological characteristic of snakeskin that allows snakes to engage selectively with surfaces and generate propulsive forces. The prototypical slithering gait of most snakes is lateral undulation, which requires a significant lateral resistance that is lacking in artificial skins of existing soft snake robots. We designed a set of kirigami lattices with curvilinearly-arranged cuts to take advantage of in-plane rotations of the 3D structures when wrapped around a soft bending actuator. By changing the initial orientation of the scales, the kirigami skin produces high lateral friction upon engagement with surface asperities, with lateral to cranial anisotropic friction ratios above 4. The proposed design increased the overall velocity of the soft snake robot more than fivefold compared to robots without skin. 
    more » « less
  3. This work presents a unique approach to the design, fabrication, and characterization of paper-based origami robotic systems consisting of stackable pneumatic actuators. These paper-based actuators (PBAs) use materials with high elastic modulus-to-mass ratios, accordion-like structures, and direct coupling with pneumatic pressure for extension and bending. The study contributes to the scientific and engineering understanding of foldable components under applied pneumatic pressure by constructing stretchable and flexible structures with intrinsically nonstretchable materials. Experiments showed that a PBA possesses a power-to-mass ratio greater than 80 W/kg, which is more than four times that of human muscle. This work also illustrates the stackability and functionality of PBAs by two prototypes: a parallel manipulator and a legged locomotor. The manipulator consisting of an array of PBAs can bend in a specific direction with the corresponding actuator inflated. In addition, the stacked actuators in the manipulator can rotate in opposite directions to compensate for relative rotation at the ends of each actuator to work in parallel and manipulate the platform. The locomotor rotates the PBAs to apply and release contact between the feet and the ground. Furthermore, a numerical model developed in this work predicts the mechanical performance of these inflatable actuators as a function of dimensional specifications and folding patterns. Overall, we use stacked origami actuators to implement functionalities of manipulation, gripping, and locomotion as conventional robotic systems. Future origami robots made of paper-like materials may be suitable for single use in contaminated or unstructured environments or low-cost educational materials. 
    more » « less
  4. This study examines the transverse elastic wave propagation bandgap in a buckled kirigami sheet. Kirigami — the ancient art of paper cutting — has become a design and fabrication framework for constructing metamaterials, robotics, and mechanical devices of vastly different sizes. For the first time, this study focuses on the wave propagation in a buckled kirigami sheet with uniformly distributed parallel cuts. When we apply an in-plane stretching force that exceeds a critical threshold, this kirigami sheet buckles and generates an out-of-plane, periodic deformation pattern that can change the propagation direction of passing waves. That is, waves entering the buckled Kirigami unit cells through its longitudinal direction can turn to the out-of-plane direction. As a result, the stretched kirigami sheet shows wave propagation band gaps in specific frequency ranges. This study formulates an analytical model to analyze the correlation between such propagation bandgap and the kirigami geometry. This model first simplifies the complex shape of buckled kirigami by introducing “virtual” folds and flat facets in between them. Then it incorporates the plane wave expansion method (PWE) to calculate the dispersion relationship, which shows that the periodic nature of the buckled kirigami sheet is sufficient to create Bragg scattering propagation bandgap. This study’s results could open up new dynamic functionalities of kirigami as a versatile and multi-functional structural system. 
    more » « less
  5. Kirigami (cutting and/or folding) offers a promising strategy to reconfigure metamaterials. Conventionally, kirigami metamaterials are often composed of passive cut unit cells to be reconfigured under mechanical forces. The constituent stimuli-responsive materials in active kirigami metamaterials instead will enable potential mechanical properties and functionality, arising from the active control of cut unit cells. However, the planar features of hinges in conventional kirigami structures significantly constrain the degrees of freedom (DOFs) in both deformation and actuation of the cut units. To release both constraints, here, we demonstrate a universal design of implementing folds to reconstruct sole-cuts–based metamaterials. We show that the supplemented folds not only enrich the structural reconfiguration beyond sole cuts but also enable more DOFs in actuating the kirigami metasheets into 3 dimensions (3D) in response to environmental temperature. Utilizing the multi-DOF in deformation of unit cells, we demonstrate that planar metasheets with the same cut design can self-fold into programmable 3D kirigami metastructures with distinct mechanical properties. Last, we demonstrate potential applications of programmable kirigami machines and easy-turning soft robots.

     
    more » « less