Abstract A novel force sensor exploiting the interaction between plasmonic nanostructures and upconversion nanoparticles (UCNPs) is reported. The nanosensor is composed of a gold nanodisk and UCNPs separated by a flexible polymer layer. The gold nanodisk is designed to exhibit a plasmon resonance that selectively enhances one of the emission bands of the UCNPs while leaving the other ones largely unaffected. As the nanosensor is compressed or stretched by an external force, the polymer layer thickness changes, modulating the plasmon‐UCNP coupling. The resulting changes in the luminescence intensity provide the basis for sensing. Furthermore, the nanosensor employs ratiometric sensing, which makes it highly robust against any environmental variations. The nanosensors exhibit two orders of magnitude higher responsivity than previously reported UCNP‐based force sensors. They can be prepared as an on‐chip sensor array or in a colloidal solution, making them suitable for a variety of applications in biology and robotics.
more »
« less
Selective enhancement of upconversion luminescence for enhanced ratiometric sensing
Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted widespread interest in bioimaging and sensing due to their photostability, low excitation energy, and good tissue penetration. Plasmonic nanostructures, on the other hand, can enhance the luminescence of UCNPs by concentrating electric fields into a nanoscale volume. While the enhanced luminescence intensity is in principle beneficial to sensing, intensity-based sensing has limitations in absolute measurements. This deficiency can be overcome by employing ratiometric sensing in which intensity ratio, rather than intensity itself, is used to quantitatively determine the presence of analytes. The ratiometric sensing is advantageous because the intensity ratio is much less sensitive to the variations in the environment and the number of probe materials in the sensing volume. Here, we demonstrate a plasmonic nanostructure with upconversion nanoparticles for an enhanced ratiometric sensing platform. The plasmonic nanostructure is composed of UCNPs, an indium tin oxide (ITO) spacer layer and an Au nanodisk. The nanostructure is designed such that the plasmon resonance selectively enhances the red luminescence of NaYGdF 4 :Yb 3+ , Er 3+ UCNPs while leaving the green luminescence unaffected, thereby increasing the dynamic range and achievable sensitivity of the red-to-green (R/G) intensity ratio. We observed a 4-fold enhancement in the R/G ratio and also a drastic reduction in the signal uncertainty. This work advances our knowledge of the optical interaction between UCNPs and plasmonic nanostructures and also provides a foundation for improved ratiometric sensing in biomedical applications.
more »
« less
- Award ID(s):
- 2029559
- PAR ID:
- 10290827
- Date Published:
- Journal Name:
- RSC Advances
- Volume:
- 11
- Issue:
- 30
- ISSN:
- 2046-2069
- Page Range / eLocation ID:
- 18205 to 18212
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Metal surfaces can alter the luminescence emitted by nanoparticles through a variety of effects including quenching, plasmonic enhancement, and optical interference-, reflection-, and absorption-related phenomena. While many of these effects are well-established, multiple such effects typically occur in parallel in realistic measurement scenarios, making the relative importance of each effect difficult to discern. As imaging and sensing applications in which luminescent nanoparticles are placed on metal surfaces continue to grow, a detailed understanding of how metal surfaces modify nanoparticle luminescence is increasingly important for optimizing and ensuring correct interpretation of the measurement results. Here, we systematically investigate how metal surfaces affect the luminescence emitted by individual NaYF4:Yb3+,Er3+ upconverting nanoparticles (UCNPs) ∼27 nm in diameter using a judiciously selected set of five different metal coatings with varying optical and thermal properties. We find that the average single-UCNP emission intensity is determined by an interplay between quenching and reflection effects. Consequently, the average single-UCNP emission intensity is correlated with the reflectance of the underlying metal coating, but non-radiative decay rate changes also play an important role, leading to different average single-UCNP emission intensities for metal coatings with near-identical reflectances. We also evaluate metal surface effects on the common ratiometric thermometry signal of NaYF4:Yb3+,Er3+ UCNPs and find that the intrinsic temperature dependence of the luminescence intensity ratio is unaffected by the underlying material. The only differences observed are the result of laser-induced heating for sufficiently absorbing metal coatings on low thermal conductivity substrates, in accordance with the predictions of an analytical heat transfer model.more » « less
-
Abstract Förster resonance energy transfer (FRET)‐based devices have been extensively researched as potential biosensors due to their highly localized responsivity. In particular, dye‐conjugated upconverting nanoparticles (UCNPs) are among the most promising FRET‐based sensor candidates. UCNPs have a multi‐modal emission profile that allows for ratiometric sensing, and by conjugating a biosensitive dye to their surface, this profile can be used to measure localized variations in biological parameters. However, the complex nature of the UCNP energy profile as well as reabsorption of emitted photons must be taken into account in order to properly sense the target parameters. To the authors’ knowledge, no proposed UCNP‐based sensor has accurately taken care of these intricacies. In this article, the authors account for these complexities by creating a FRET‐based sensor that measures pH. This sensor utilizes Thulium (Tm3+)‐doped UCNPs and the fluorescent dye fluorescein isothiocyanate (FITC). It is first demonstrated that photon reabsorption is a serious issue for the 475 nm Tm3+emission, thereby limiting its use in FRET‐based sensing. It is then shown that by taking the ratio of the 646 and 800 nm emissions rather than the more popular 475 nm one, it is possible to measure pH exclusively through FRET.more » « less
-
Plasmonic nanoparticles with chiral resonances in the visible wavelengths complement optical dissymmetry in the ultraviolet and near-infrared wavelengths in natural products and metamaterials respectively. Here, we show that under oxidative conditions, hot holes photogenerated with circularly polarized light in gold nanoprisms can spatially direct the photodeposition of lead oxide (PbO2), resulting in chiral nanostructures tunable with the polarization and wavelength of light. We observe a g-factor of 3.6 × 10–3, which can be attributed to the enhanced optical dissymmetry with PbO2 deposition of the side of nanoprisms upon illumination with green 532 nm light. Our finite-difference time-domain calculations support the site-specific photodeposition of PbO2 onto nanoprisms. This work shows that plasmonic nanoparticles can have tunable chiral properties imbued as a function of the wavelength and polarization of light.more » « less
-
Abstract The COVID-19 pandemic has profoundly impacted global economies and healthcare systems, revealing critical vulnerabilities in both. In response, our study introduces a sensitive and highly specific detection method for cDNA, leveraging Luminescence Resonance Energy Transfer (LRET) between upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs), and achieves a detection limit of 242 fM for SARS-CoV-2 cDNA. This innovative sensing platform utilizes UCNPs conjugated with one primer and AuNPs with another, targeting the 5′ and 3′ ends of the SARS-CoV-2 cDNA, respectively, enabling precise differentiation of mismatched cDNA sequences and significantly improving detection specificity. Through rigorous experimental analysis, we established a quenching efficiency range from 10.4 % to 73.6 %, with an optimal midpoint of 42 %, thereby demonstrating the superior sensitivity of our method. Our work uses SARS-CoV-2 cDNA as a model system to demonstrate the potential of our LRET-based detection method. This proof-of-concept study highlights the adaptability of our platform for future diagnostic applications. Instrumental validation confirms the synthesis and formation of AuNPs, addressing the need for experimental verification of the preparation of nanomaterial. Our comparative analysis with existing SARS-CoV-2 detection methods revealed that our approach provides a low detection limit and high specificity for target cDNA sequences, underscoring its potential for targeted COVID-19 diagnostics. This study demonstrates the superior sensitivity and adaptability of using UCNPs and AuNPs for cDNA detection, offering significant advances in rapid, accessible diagnostic technologies. Our method, characterized by its low detection limit and high precision, represents a critical step forward in developing next-generation biosensors for managing current and future viral outbreaks. By adjusting primer sequences, this platform can be tailored to detect other pathogens, contributing to the enhancement of global healthcare responsiveness and infectious disease control.more » « less
An official website of the United States government

