Understanding the drivers of surface melting in West Antarctica is crucial for understanding future ice loss and global sea level rise. This study identifies atmospheric drivers of surface melt on West Antarctic ice shelves and ice sheet margins and relationships with tropical Pacific and high-latitude climate forcing using multidecadal reanalysis and satellite datasets. Physical drivers of ice melt are diagnosed by comparing satellite-observed melt patterns to anomalies of reanalysis near-surface air temperature, winds, and satellite-derived cloud cover, radiative fluxes, and sea ice concentration based on an Antarctic summer synoptic climatology spanning 1979–2017. Summer warming in West Antarctica is favored by Amundsen Sea (AS) blocking activity and a negative phase of the southern annular mode (SAM), which both correlate with El Niño conditions in the tropical Pacific Ocean. Extensive melt events on the Ross–Amundsen sector of the West Antarctic Ice Sheet (WAIS) are linked to persistent, intense AS blocking anticyclones, which force intrusions of marine air over the ice sheet. Surface melting is primarily driven by enhanced downwelling longwave radiation from clouds and a warm, moist atmosphere and by turbulent mixing of sensible heat to the surface by föhn winds. Since the late 1990s, concurrent with ocean-driven WAIS mass loss, summer surface melt occurrence has increased from the Amundsen Sea Embayment to the eastern Ross Ice Shelf. We link this change to increasing anticyclonic advection of marine air into West Antarctica, amplified by increasing air–sea fluxes associated with declining sea ice concentration in the coastal Ross–Amundsen Seas.
- Award ID(s):
- 1745089
- NSF-PAR ID:
- 10290915
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 7
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract West Antarctic Ice Sheet mass loss is a major source of uncertainty in sea level projections. The primary driver of this melting is oceanic heat from Circumpolar Deep Water originating offshore in the Antarctic Circumpolar Current. Yet, in assessing melt variability, open ocean processes have received considerably less attention than those governing cross-shelf exchange. Here, we use Lagrangian particle release experiments in an ocean model to investigate the pathways by which Circumpolar Deep Water moves toward the continental shelf across the Pacific sector of the Southern Ocean. We show that Ross Gyre expansion, linked to wind and sea ice variability, increases poleward heat transport along the gyre’s eastern limb and the relative fraction of transport toward the Amundsen Sea. Ross Gyre variability, therefore, influences oceanic heat supply toward the West Antarctic continental slope. Understanding remote controls on basal melt is necessary to predict the ice sheet response to anthropogenic forcing.
-
Most state-of-art models project a reduced equatorial Pacific east-west temperature gradient and a weakened Walker circulation under global warming. However, the causes of this robust projection remain elusive. Here, we devise a series of slab ocean model experiments to diagnostically decompose the global warming response into the contributions from the direct carbon dioxide (CO2) forcing, sea ice changes, and regional ocean heat uptake. The CO2forcing dominates the Walker circulation slowdown through enhancing the tropical tropospheric stability. Antarctic sea ice changes and local ocean heat release are the dominant drivers for reduced zonal temperature gradient over the equatorial Pacific, while the Southern Ocean heat uptake opposes this change. Corroborating our model experiments, multimodel analysis shows that the models with greater Southern Ocean heat uptake exhibit less reduction in the temperature gradient and less weakening of the Walker circulation. Therefore, constraining the tropical Pacific projection requires a better insight into Southern Ocean processes.
-
Abstract The expansion of Antarctic sea ice since 1979 in the presence of increasing greenhouse gases remains one of the most puzzling features of current climate change. Some studies have proposed that the formation of the ozone hole, via the Southern Annular Mode, might explain that expansion, and a recent paper highlighted a robust causal link between summertime Southern Annular Mode (SAM) anomalies and sea ice anomalies in the subsequent autumn. Here we show that many models are able to capture this relationship between the SAM and sea ice, but also emphasize that the SAM only explains a small fraction of the year‐to‐year variability. Finally, examining multidecadal trends, in models and in observations, we confirm the findings of several previous studies and conclude that the SAM–and thus the ozone hole–are not the primary drivers of the sea ice expansion around Antarctica in recent decades.
-
Abstract. Ocean-driven ice loss from the West Antarctic Ice Sheet is asignificant contributor to sea-level rise. Recent ocean variability in theAmundsen Sea is controlled by near-surface winds. We combine palaeoclimatereconstructions and climate model simulations to understand past and futureinfluences on Amundsen Sea winds from anthropogenic forcing and internalclimate variability. The reconstructions show strong historical wind trends.External forcing from greenhouse gases and stratospheric ozone depletiondrove zonally uniform westerly wind trends centred over the deep SouthernOcean. Internally generated trends resemble a South Pacific Rossby wavetrain and were highly influential over the Amundsen Sea continental shelf.There was strong interannual and interdecadal variability over the AmundsenSea, with periods of anticyclonic wind anomalies in the 1940s and 1990s,when rapid ice-sheet loss was initiated. Similar anticyclonic anomaliesprobably occurred prior to the 20th century but without causing the presentice loss. This suggests that ice loss may have been triggered naturally inthe 1940s but failed to recover subsequently due to the increasingimportance of anthropogenic forcing from greenhouse gases (since the 1960s)and ozone depletion (since the 1980s). Future projections also featurestrong wind trends. Emissions mitigation influences wind trends over thedeep Southern Ocean but has less influence on winds over the Amundsen Seashelf, where internal variability creates a large and irreducibleuncertainty. This suggests that strong emissions mitigation is needed tominimise ice loss this century but that the uncontrollable future influenceof internal climate variability could be equally important.more » « less