skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interannual SAM Modulation of Antarctic Sea Ice Extent Does Not Account for Its Long‐Term Trends, Pointing to a Limited Role for Ozone Depletion
Abstract The expansion of Antarctic sea ice since 1979 in the presence of increasing greenhouse gases remains one of the most puzzling features of current climate change. Some studies have proposed that the formation of the ozone hole, via the Southern Annular Mode, might explain that expansion, and a recent paper highlighted a robust causal link between summertime Southern Annular Mode (SAM) anomalies and sea ice anomalies in the subsequent autumn. Here we show that many models are able to capture this relationship between the SAM and sea ice, but also emphasize that the SAM only explains a small fraction of the year‐to‐year variability. Finally, examining multidecadal trends, in models and in observations, we confirm the findings of several previous studies and conclude that the SAM–and thus the ozone hole–are not the primary drivers of the sea ice expansion around Antarctica in recent decades.  more » « less
Award ID(s):
1848863 1745029
PAR ID:
10366513
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
21
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study investigates how clouds and their atmospheric radiative effects respond to meridional shifts in the Southern Hemisphere (SH) mid‐latitude jet, represented by the Southern Annular Mode (SAM), using reanalysis data, CloudSat/CALIPSO observations, and CMIP6 models. Consistent with previous studies, poleward jet shifts displace storm‐track clouds, creating lower tropospheric radiative heating anomalies poleward of the mean jet latitude and cooling anomalies on the equatorward side of the mean jet latitude where large‐scale subsidence increases low cloud fraction. Whether these radiative heating anomalies can affect SAM persistence is also investigated in CMIP6 models. If observed sea surface temperatures are prescribed, models that simulate low cloud responses more realistically show less SAM persistence, aligning more closely with observations. Our results based on CMIP6 models agree with a recent idealized modeling study and suggest that atmospheric cloud radiative heating anomalies, induced by the poleward jet shift, contribute to a reduction in SAM persistence. 
    more » « less
  2. Abstract Observations reveal Antarctic sea ice expansion and Southern Ocean surface cooling trends from 1979 to 2014, whereas climate models mostly simulate the opposite. Here I use historical ensemble simulations with multiple climate models to show that sea-ice natural variability enables the models to simulate an Antarctic sea ice expansion during this period under anthropogenic forcings. Along with sea-ice expansion, Southern Ocean surface and subsurface temperatures up to 50oS, as well as lower tropospheric temperatures between 60oS and 80oS, exhibit significant cooling trends, all of which are consistent with observations. Compared to the sea-ice decline scenario, Antarctic sea ice expansion brings tropical precipitation changes closer to observations. Neither the Southern Annular Mode nor the Interdecadal Pacific Oscillation can fully explain the simulated Antarctic sea ice expansion over 1979–2014, while the sea-ice expansion is closely linked to surface meridional winds associated with a zonal wave 3 pattern. 
    more » « less
  3. null (Ed.)
    The manuscript assesses the current and expected future global drivers of Southern Ocean (SO) ecosystems. Atmospheric ozone depletion over the Antarctic since the 1970s, has been a key driver, resulting in springtime cooling of the stratosphere and intensification of the polar vortex, increasing the frequency of positive phases of the Southern Annular Mode (SAM). This increases warm air-flow over the East Pacific sector (Western Antarctic Peninsula) and cold air flow over the West Pacific sector. SAM as well as El Niño Southern Oscillation events also affect the Amundsen Sea Low leading to either positive or negative sea ice anomalies in the west and east Pacific sectors, respectively. The strengthening of westerly winds is also linked to shoaling of deep warmer water onto the continental shelves, particularly in the East Pacific and Atlantic sectors. Air and ocean warming has led to changes in the cryosphere, with glacial and ice sheet melting in both sectors, opening up new ice free areas to biological productivity, but increasing seafloor disturbance by icebergs. The increased melting is correlated with a salinity decrease particularly in the surface 100 m. Such processes could increase the availability of iron, which is currently limiting primary production over much of the SO. Increasing CO 2 is one of the most important SO anthropogenic drivers and is likely to affect marine ecosystems in the coming decades. While levels of many pollutants are lower than elsewhere, persistent organic pollutants (POPs) and plastics have been detected in the SO, with concentrations likely enhanced by migratory species. With increased marine traffic and weakening of ocean barriers the risk of the establishment of non-indigenous species is increased. The continued recovery of the ozone hole creates uncertainty over the reversal in sea ice trends, especially in the light of the abrupt transition from record high to record low Antarctic sea ice extent since spring 2016. The current rate of change in physical and anthropogenic drivers is certain to impact the Marine Ecosystem Assessment of the Southern Ocean (MEASO) region in the near future and will have a wide range of impacts across the marine ecosystem. 
    more » « less
  4. Abstract The Southern Annular Mode (SAM) is the leading mode of extratropical Southern Hemisphere climate variability, associated with changes in the strength and position of the polar jet around Antarctica. This variability in the polar jet drives large fluctuations in the Southern Hemisphere climate, from the lower stratosphere into the troposphere, and stretching from the midlatitudes across the Southern Ocean to Antarctica. Notably, the SAM index has displayed marked positive trends in the austral summer season (stronger and poleward shifted westerlies), associated with stratospheric ozone loss. Historical reconstructions demonstrate that these recent positive SAM index values are unprecedented in the last millennia, and fall outside the range of natural climate variability. Despite these advances in the understanding of the SAM behavior, several areas of active research are identified that highlight gaps in our present knowledge. This article is categorized under:Paleoclimates and Current Trends > Earth System Behavior 
    more » « less
  5. Abstract Early reanalyses are less than optimal for investigating the regional effects of ozone depletion on Southern Hemisphere (SH) high-latitude climate because the availability of satellite sounder data from 1979 significantly improved their accuracy in data sparse regions, leading to a coincident inhomogeneity. To determine whether current reanalyses are better at SH high-latitudes in the pre-satellite era, here we examine the capabilities of the European Centre for Medium-range Weather Forecasts (ECMWF) fifth generation reanalysis (ERA5), the Twentieth Century Reanalysis version 3 (20CRv3), and the Japanese Meteorological Agency (JMA) 55-year reanalysis (JRA-55) to reproduce and help explain the pronounced change in the relationship between the Southern Annular Mode (SAM) and Antarctic near-surface air temperatures (SAT) between 1950 and 1979 (EARLY period) and 1980–2020 (LATE period). We find that ERA5 best reproduces Antarctic SAT in the EARLY period and is also the most homogeneous reanalysis across the EARLY and LATE periods. ERA5 and 20CRv3 provide a good representation of SAM in both periods with JRA-55 only similarly skilful in the LATE period. Nevertheless, all three reanalyses show the marked change in Antarctic SAM-SAT relationships between the two periods. In particular, ERA5 and 20CRv3 demonstrate the observed switch in the sign of the SAM-SAT relationship in the Antarctic Peninsula: analysis of changes in SAM structure and associated meridional wind anomalies reveal that in these reanalyses positive SAM is linked to cold southerly winds during the EARLY period and warm northerly winds in the LATE period, thus providing a simple explanation for the regional SAM-SAT relationship reversal. 
    more » « less