skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Survivable Virtual Network Mapping against Double-Link Failures Based on Virtual Network Capacity Sharing
Award ID(s):
1818972
PAR ID:
10291022
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
CNSM
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Physical sensing is increasingly implemented in modern industries to improve information visibility, which generates real-time signals that are spatially distributed and temporally varying. These signals are often nonlinear and nonstationary in the high-dimensional space, which pose significant challenges to monitoring and control of complex systems. Therefore, this article presents a new “virtual sensing” approach that places imaginary sensors at different locations in signaling trajectories to monitor evolving dynamics within the signal space. First, we propose self-organizing principles to investigate distributional and topological features of nonlinear signals for optimal placement of imaginary sensors. Second, we design and develop the network model to represent real-time flux dynamics among these virtual sensors, in which each node represents a virtual sensor, while edges signify signal flux among sensors. Third, the establishment of a network model as well as the notion of transition uncertainty enable a fine-grained view into system dynamics and then extend a new Flux Rank (FR) algorithm for process monitoring. Experimental results show that the network FR methodology not only delineate real-time flux patterns in nonlinear signals, but also effectively monitor spatiotemporal changes in the dynamics of nonlinear dynamical systems. 
    more » « less
  2. null (Ed.)