Monitoring systems have hundreds or thousands of distributed sensors gathering and transmitting real-time streaming data. The early detection of events in these systems, such as an earthquake in a seismic monitoring system, is the base for essential tasks as warning generations. To detect such events is usual to compute pairwise correlation across the disparate signals generated by the sensors. Since the data sources (e.g., sensors) are spatially separated, it is essential to consider the lagged correlation between the signals. Besides, many applications require to process a specific band of frequencies depending on the event’s type, demanding a pre-processing step of filtering before computing correlations. Due to the high speed of data generation and a large number of sensors in these systems, the operations of filtering and lagged cross-correlation need to be efficient to provide real-time responses without data losses. This article proposes a technique named FilCorr that efficiently computes both operations in one single step. We achieve an order of magnitude speedup by maintaining frequency transforms over sliding windows. Our method is exact, devoid of sensitive parameters, and easily parallelizable. Besides our algorithm, we also provide a publicly available real-time system named Seisviz that employs FilCorr in its core mechanism for monitoring a seismometer network. We demonstrate that our technique is suitable for several monitoring applications as seismic signal monitoring, motion monitoring, and neural activity monitoring.
more »
« less
Virtual sensing network for statistical process monitoring
Physical sensing is increasingly implemented in modern industries to improve information visibility, which generates real-time signals that are spatially distributed and temporally varying. These signals are often nonlinear and nonstationary in the high-dimensional space, which pose significant challenges to monitoring and control of complex systems. Therefore, this article presents a new “virtual sensing” approach that places imaginary sensors at different locations in signaling trajectories to monitor evolving dynamics within the signal space. First, we propose self-organizing principles to investigate distributional and topological features of nonlinear signals for optimal placement of imaginary sensors. Second, we design and develop the network model to represent real-time flux dynamics among these virtual sensors, in which each node represents a virtual sensor, while edges signify signal flux among sensors. Third, the establishment of a network model as well as the notion of transition uncertainty enable a fine-grained view into system dynamics and then extend a new Flux Rank (FR) algorithm for process monitoring. Experimental results show that the network FR methodology not only delineate real-time flux patterns in nonlinear signals, but also effectively monitor spatiotemporal changes in the dynamics of nonlinear dynamical systems.
more »
« less
- Award ID(s):
- 1856132
- PAR ID:
- 10515474
- Publisher / Repository:
- IISE Transactions
- Date Published:
- Journal Name:
- IISE Transactions
- Volume:
- 55
- Issue:
- 11
- ISSN:
- 2472-5854
- Page Range / eLocation ID:
- 1103 to 1117
- Subject(s) / Keyword(s):
- Virtual sensing network model flux rank self-organization general likelihood ratio statistical process control
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract—We present SaSTL—a novel Spatial Aggregation Signal Temporal Logic—for the efficient runtime monitoring of safety and performance requirements in smart cities. We first describe a study of over 1,000 smart city requirements, some of which can not be specified using existing logic such as Signal Temporal Logic (STL) and its variants. To tackle this limitation, we develop two new logical operators in SaSTL to augment STL for expressing spatial aggregation and spatial counting characteristics that are commonly found in real city requirements. We also develop efficient monitoring algorithms that can check a SaSTL requirement in parallel over multiple data streams (e.g., generated by multiple sensors distributed spatially in a city).We evaluate our SaSTL monitor by applying to two case studies with large-scale real city sensing data (e.g., up to 10,000 sensors in one requirement). The results show that SaSTL has a much higher coverage expressiveness than other spatial-temporal logics, and with a significant reduction of computation time for monitoring requirements. We also demonstrate that the SaSTL monitor can help improve the safety and performance of smart cities via simulated experiments.more » « less
-
Abstract Soft (flexible and stretchable) biosensors have great potential in real-time and continuous health monitoring of various physiological factors, mainly due to their better conformability to soft human tissues and organs, which maximizes data fidelity and minimizes biological interference. Most of the early soft sensors focused on sensing physical signals. Recently, it is becoming a trend that novel soft sensors are developed to sense and monitor biochemical signalsin situin real biological environments, thus providing much more meaningful data for studying fundamental biology and diagnosing diverse health conditions. This is essential to decentralize the healthcare resources towards predictive medicine and better disease management. To meet the requirements of mechanical softness and complex biosensing, unconventional materials, and manufacturing process are demanded in developing biosensors. In this review, we summarize the fundamental approaches and the latest and representative design and fabrication to engineer soft electronics (flexible and stretchable) for wearable and implantable biochemical sensing. We will review the rational design and ingenious integration of stretchable materials, structures, and signal transducers in different application scenarios to fabricate high-performance soft biosensors. Focus is also given to how these novel biosensors can be integrated into diverse important physiological environments and scenariosin situ, such as sweat analysis, wound monitoring, and neurochemical sensing. We also rethink and discuss the current limitations, challenges, and prospects of soft biosensors. This review holds significant importance for researchers and engineers, as it assists in comprehending the overarching trends and pivotal issues within the realm of designing and manufacturing soft electronics for biochemical sensing.more » « less
-
We articulate the design imperatives for machine learning based digital twins for nonlinear dynamical systems, which can be used to monitor the “health” of the system and anticipate future collapse. The fundamental requirement for digital twins of nonlinear dynamical systems is dynamical evolution: the digital twin must be able to evolve its dynamical state at the present time to the next time step without further state input—a requirement that reservoir computing naturally meets. We conduct extensive tests using prototypical systems from optics, ecology, and climate, where the respective specific examples are a chaotic CO2 laser system, a model of phytoplankton subject to seasonality, and the Lorenz-96 climate network. We demonstrate that, with a single or parallel reservoir computer, the digital twins are capable of a variety of challenging forecasting and monitoring tasks. Our digital twin has the following capabilities: (1) extrapolating the dynamics of the target system to predict how it may respond to a changing dynamical environment, e.g., a driving signal that it has never experienced before, (2) making continual forecasting and monitoring with sparse real-time updates under non-stationary external driving, (3) inferring hidden variables in the target system and accurately reproducing/predicting their dynamical evolution, (4) adapting to external driving of different waveform, and (5) extrapolating the global bifurcation behaviors to network systems of different sizes. These features make our digital twins appealing in applications, such as monitoring the health of critical systems and forecasting their potential collapse induced by environmental changes or perturbations. Such systems can be an infrastructure, an ecosystem, or a regional climate system.more » « less
-
The emerging sector of offshore kelp aquaculture represents an opportunity to produce biofuel feedstock to help meet growing energy demand. Giant kelp represents an attractive aquaculture crop due to its rapid growth and production, however precision farming over large scales is required to make this crop economically viable. These demands necessitate high frequency monitoring to ensure outplant success, maximum production, and optimum quality of harvested biomass, while the long distance from shore and large necessary scales of production makes in person monitoring impractical. Remote sensing offers a practical monitoring solution and nascent imaging technologies could be leveraged to provide daily products of the kelp canopy and subsurface structures over unprecedented spatial scales. Here, we evaluate the efficacy of remote sensing from satellites and aerial and underwater autonomous vehicles as potential monitoring platforms for offshore kelp aquaculture farms. Decadal-scale analyses of the Southern California Bight showed that high offshore summertime cloud cover restricts the ability of satellite sensors to provide high frequency direct monitoring of these farms. By contrast, daily monitoring of offshore farms using sensors mounted to aerial and underwater drones seems promising. Small Unoccupied Aircraft Systems (sUAS) carrying lightweight optical sensors can provide estimates of canopy area, density, and tissue nitrogen content on the time and space scales necessary for observing changes in this highly dynamic species. Underwater color imagery can be rapidly classified using deep learning models to identify kelp outplants on a longline farm and high acoustic returns of kelp pneumatocysts from side scan sonar imagery signal an ability to monitor the subsurface development of kelp fronds. Current sensing technologies can be used to develop additional machine learning and spectral algorithms to monitor outplant health and canopy macromolecular content, however future developments in vehicle and infrastructure technologies are necessary to reduce costs and transcend operational limitations for continuous deployment in an offshore setting.more » « less
An official website of the United States government

