This study proposes a multi-period facility location formulation to maximize coverage while meeting a coverage reliability constraint. The coverage reliability constraint is a chance constraint limiting the probability of failure to maintain the desired service standard, commonly followed by emergency medical services and fire departments. Further, uncertainties in the failure probabilities are incorporated by utilizing robust optimization using polyhedral uncertainty sets, which results in a compact mixed-integer linear program. A case study in the Portland, OR metropolitan area is analyzed for employing unmanned aerial vehicles (UAVs) or drones to deliver defibrillators in the region to combat out-of-hospital cardiac arrests. In the context of this study, multiple periods represent periods with different wind speed and direction distributions. The results show that extending to a multi-period formulation, rather than using average information in a single period, is particularly beneficial when either response time is short or uncertainty in failure probabilities is not accounted for. Accounting for uncertainty in decision-making improves coverage significantly while also reducing variability in simulated coverage, especially when response times are longer. Going from a single-period deterministic formulation to a multi-period robust formulation boosts the simulated coverage values by 57%, on average. The effect of considering a distance-based equity metric in decision-making is also explored.
more »
« less
Robust Maximum Coverage Facility Location Problem with Drones Considering Uncertainties in Battery Availability and Consumption
Given a set of a spatially distributed demand for a specific commodity, potential facility locations, and drones, an agency is tasked with locating a pre-specified number of facilities and assigning drones to them to serve the demand while respecting drone range constraints. The agency seeks to maximize the demand served while considering uncertainties in initial battery availability and battery consumption. The facilities have a limited supply of the commodity being distributed and also act as a launching site for drones. Drones undertake one-to-one trips (from located facility to demand location and back) until their available battery energy is exhausted. This paper extends the work done by Chauhan et al. and presents an integer linear programming formulation to maximize coverage using a robust optimization framework. The uncertainty in initial battery availability and battery consumption is modeled using a penalty-based approach and gamma robustness, respectively. A novel robust three-stage heuristic (R3SH) is developed which provides objective values which are within 7% of the average solution reported by MIP solver with a median reduction in computational time of 97% on average. Monte Carlo simulation based testing is performed to assess the value of adding robustness to the deterministic problem. The robust model provides higher and more reliable estimates of actual coverage under uncertainty. The average maximum coverage difference between the robust optimization solution and the deterministic solution is 8.1% across all scenarios.
more »
« less
- PAR ID:
- 10291025
- Date Published:
- Journal Name:
- Transportation Research Record: Journal of the Transportation Research Board
- Volume:
- 2675
- Issue:
- 2
- ISSN:
- 0361-1981
- Page Range / eLocation ID:
- 25 to 39
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Increasing e-commerce activity, competition for shorter delivery times, and innovations in transportation technologies have pushed the industry toward instant delivery logistics. This paper studies a facility location and online demand allocation problem applicable to a logistics company expanding to offer instant delivery service using unmanned aerial vehicles or drones. The problem is decomposed into two stages. During the planning stage, the facilities are located, and product and battery capacity are allocated. During the operational stage, customers place orders dynamically and real-time demand allocation decisions are made. The paper explores a multi-armed bandit framework for maximizing the cumulative reward realized by the logistics company subject to various capacity constraints and compares it with other strategies. The multi-armed bandit framework provides about 7% more rewards than the second-best strategy when tested on standard test instances. A case study based in Portland Metro Area showed that multi-armed bandits can outperform the second-best strategy by more than 20%.more » « less
-
This article describes a new spatial optimization model, the Multiple Gradual Maximal Covering Location Problem (MG‐MCLP). This model is useful when coverage from multiple facilities or sensors is necessary to consider a demand to be covered, and when the quality of that coverage varies with the number of located facilities within the service distance, and the distance from the demand itself. The motivating example for this model uses a coupled GIS and optimization framework to determine the optimal locations for acoustic sensors—typically used in police applications for gunshot detection—in Tuscaloosa, AL. The results identify the optimal facility locations for allocating multiple facilities, at different locations, to cover multiple demands and evaluate those optimal locations with distance‐decay. Solving the MG‐MCLP over a range of values allows for comparing the performance of varying numbers of available resources, which could be used by public safety operations to demonstrate the number of resources that would be required to meet policy goals. The results illustrate the flexibility in designing alternative spatial allocation strategies and provide a tractable covering model that is solved with standard linear programming and GIS software, which in turn can improve spatial data analysis across many operational contexts.more » « less
-
Kainz, Wolfgang (Ed.)This research employs a spatial optimization approach customized for addressing equitable emergency medical facility location problems through the p-dispersed-median problem (p-DIME). The p-DIME integrates two conflicting classes of spatial optimization problems, dispersion and median problems, aiming to identify the optimal locations for emergency medical facilities to achieve an equitable spatial distribution of emergency medical services (EMS) while effectively serving demand. To demonstrate the utility of the p-DIME model, we selected Gyeongsangbuk-do in South Korea, recognized as one of the most challenging areas for providing EMS to the elderly population (aged 65 and over). This challenge arises from the significant spatial disparity in the distribution of emergency medical facilities. The results of the model assessment gauge the spatial disparity of EMS, provide significantly enhanced solutions for a more equitable EMS distribution in terms of service coverage, and offer policy implications for future EMS location planning. In addition, to address the computational challenges posed by p-DIME’s inherent complexity, involving mixed-integer programming, this study introduces a solution technique through constraint formulations aimed at tightening the lower bounds of the problem’s solution space. The computational results confirm the effectiveness of this approach in ensuring reliable computational performance, with significant reductions in solution times, while still producing optimal solutions.more » « less
-
The emergence of battery electric trucks (BETs) in recent years has shown great promise in reducing greenhouse gas (GHG) emissions in urban freight logistics. However, designing a customer-oriented dispatching strategy for a BET fleet is more complex than traditional vehicle routing problems (VRP) due to several constraints, such as limited driving range, potential need for en route recharging, and long recharging times. Also, in practice, the uncertain travel times in urban transportation network may lead to the violation of scheduled customer time windows and impact overall energy consumption. To better utilize the BET fleet, this paper introduces a robust BET dispatching problem with backhauls and time windows under travel time uncertainty, which aims to minimize the overall fleet energy consumption while also minimizing the risk of violating customer time window. A mathematical optimization model based on novel route-related sets is developed, and an adaptive large neighborhood search (ALNS) metaheuristic algorithm is used to find robust dispatching solutions. Based on real-world data from a truck fleet in San Bernardino County, California, a simulation study is conducted to demonstrate the robustness of the solutions obtained by the proposed method. Moreover, a sensitivity analysis with respect to uncertainty parameters is performed to assess the trade-off between the overall fleet energy consumption and the robustness of the solutions.more » « less
An official website of the United States government

