skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elastic Depths for Detecting Shape Anomalies in Functional Data
We propose a new family of depth measures called the elastic depths that can be used to greatly improve shape anomaly detection in functional data. Shape anomalies are functions that have considerably different geometric forms or features from the rest of the data. Identifying them is generally more difficult than identifying magnitude anomalies because shape anomalies are often not distinguishable from the bulk of the data with visualization methods. The proposed elastic depths use the recently developed elastic distances to directly measure the centrality of functions in the amplitude and phase spaces. Measuring shape outlyingness in these spaces provides a rigorous quantification of shape, which gives the elastic depths a strong theoretical and practical advantage over other methods in detecting shape anomalies. A simple boxplot and thresholding method is introduced to identify shape anomalies using the elastic depths. We assess the elastic depth’s detection skill on simulated shape outlier scenarios and compare them against popular shape anomaly detectors. Finally, we use hurricane trajectories to demonstrate the elastic depth methodology on manifold valued functional data.  more » « less
Award ID(s):
1922758 1830312
PAR ID:
10291130
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Technometrics
ISSN:
0040-1706
Page Range / eLocation ID:
1 to 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Density estimation is a widely used method to perform unsupervised anomaly detection. By learning the density function, data points with relatively low densities are classified as anomalies. Unfortunately, the presence of anomalies in training data may significantly impact the density estimation process, thereby imposing significant challenges to the use of more sophisticated density estimation methods such as those based on deep neural networks. In this work, we propose RobustRealNVP, a deep density estimation framework that enhances the robustness of flow-based density estimation methods, enabling their application to unsupervised anomaly detection. RobustRealNVP differs from existing flow-based models from two perspectives. First, RobustRealNVP discards data points with low estimated densities during optimization to prevent them from corrupting the density estimation process. Furthermore, it imposes Lipschitz regularization to the flow-based model to enforce smoothness in the estimated density function. We demonstrate the robustness of our algorithm against anomalies in training data from both theoretical and empirical perspectives. The results show that our algorithm achieves competitive results as compared to state-of-the-art unsupervised anomaly detection methods. 
    more » « less
  2. As networks are ubiquitous in the modern era, point anomalies have been changed to graph anomalies in terms of anomaly shapes. However, the specific-shape priors about anomalous subgraphs of interest are seldom considered by the traditional approaches when detecting the subgraphs in attributed graphs (e.g., computer networks, Bitcoin networks, and etc.). This paper proposes a nonlinear approach to specific-shape graph anomaly detection. The nonlinear approach focuses on optimizing a broad class of nonlinear cost functions via specific-shape constraints in attributed graphs. Our approach can be used in many different graph anomaly settings. The traditional approaches can only support linear cost functions (e.g., an aggregation function for the summation of node weights). However, our approach can employ more powerful nonlinear cost functions and enjoys a rigorous theoretical guarantee on the near-optimal solution with the geometrical convergence rate. 
    more » « less
  3. Anomaly detection aims at identifying data points that show systematic deviations from the major- ity of data in an unlabeled dataset. A common assumption is that clean training data (free of anomalies) is available, which is often violated in practice. We propose a strategy for training an anomaly detector in the presence of unlabeled anomalies that is compatible with a broad class of models. The idea is to jointly infer binary la- bels to each datum (normal vs. anomalous) while updating the model parameters. Inspired by out- lier exposure (Hendrycks et al., 2018) that con- siders synthetically created, labeled anomalies, we thereby use a combination of two losses that share parameters: one for the normal and one for the anomalous data. We then iteratively proceed with block coordinate updates on the parameters and the most likely (latent) labels. Our exper- iments with several backbone models on three image datasets, 30 tabular data sets, and a video anomaly detection benchmark showed consistent and significant improvements over the baselines. 
    more » « less
  4. null (Ed.)
    Network anomaly detection aims to find network elements (e.g., nodes, edges, subgraphs) with significantly different behaviors from the vast majority. It has a profound impact in a variety of applications ranging from finance, healthcare to social network analysis. Due to the unbearable labeling cost, existing methods are predominately developed in an unsupervised manner. Nonetheless, the anomalies they identify may turn out to be data noises or uninteresting data instances due to the lack of prior knowledge on the anomalies of interest. Hence, it is critical to investigate and develop few-shot learning for network anomaly detection. In real-world scenarios, few labeled anomalies are also easy to be accessed on similar networks from the same domain as the target network, while most of the existing works omit to leverage them and merely focus on a single network. Taking advantage of this potential, in this work, we tackle the problem of few-shot network anomaly detection by (1) proposing a new family of graph neural networks -- Graph Deviation Networks (GDN) that can leverage a small number of labeled anomalies for enforcing statistically significant deviations between abnormal and normal nodes on a network; (2) equipping the proposed GDN with a new cross- network meta-learning algorithm to realize few-shot network anomaly detection by transferring meta-knowledge from multiple auxiliary networks. Extensive experimental evaluations demonstrate the efficacy of the proposed approach on few-shot or even one-shot network anomaly detection. 
    more » « less
  5. The proliferation of web platforms has created incentives for online abuse. Many graph-based anomaly detection techniques are proposed to identify the suspicious accounts and behaviors. However, most of them detect the anomalies once the users have performed many such behaviors. Their performance is substantially hindered when the users' observed data is limited at an early stage, which needs to be improved to minimize financial loss. In this work, we propose Eland, a novel framework that uses action sequence augmentation for early anomaly detection. Eland utilizes a sequence predictor to predict next actions of every user and exploits the mutual enhancement between action sequence augmentation and user-action graph anomaly detection. Experiments on three real-world datasets show that Eland improves the performance of a variety of graph-based anomaly detection methods. With Eland, anomaly detection performance at an earlier stage is better than non-augmented methods that need significantly more observed data by up to 15% on the Area under the ROC curve. 
    more » « less