We are interested in representation learning in self-supervised, supervised, and semi-supervised settings. Some recent self-supervised learning methods like mean-shift (MSF) cluster images by pulling the embedding of a query image to be closer to its nearest neighbors (NNs). Since most NNs are close to the query by design, the averaging may not affect the embedding of the query much. On the other hand, far away NNs may not be semantically related to the query. We generalize the mean-shift idea by constraining the search space of NNs using another source of knowledge so that NNs are far from the query while still being semantically related. We show that our method (1) outperforms MSF in SSL setting when the constraint utilizes a different augmentation of an image from the previous epoch, and (2) outperforms PAWS in semi-supervised setting with less training resources when the constraint ensures that the NNs have the same pseudo-label as the query.
more »
« less
Mean Shift for Self-Supervised Learning
Most recent self-supervised learning (SSL) algorithms learn features by contrasting between instances of images or by clustering the images and then contrasting between the image clusters. We introduce a simple mean-shift algorithm that learns representations by grouping images together without contrasting between them or adopting much prior on the structure or number of the clusters. We simply “shift” the embedding of each image to be close to the “mean” of the neighbors of its augmentation. Since the closest neighbor is always another augmentation of the same image, our model will be identical to BYOL when using only one nearest neighbor instead of 5 used in our experiments. Our model achieves 72.4% on ImageNet linear evaluation with ResNet50 at 200 epochs outperforming BYOL. Also, our method outperforms the SOTA by a large margin when using weak augmentations only, facilitating adoption of SSL for other modalities.
more »
« less
- PAR ID:
- 10291161
- Date Published:
- Journal Name:
- International Conference on Computer Vision (ICCV)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We are interested in representation learning in self-supervised, supervised, and semi-supervised settings. Some recent self-supervised learning methods like mean-shift (MSF) cluster images by pulling the embedding of a query image to be closer to its nearest neighbors (NNs). Since most NNs are close to the query by design, the averaging may not affect the embedding of the query much. On the other hand, far away NNs may not be semantically related to the query. We generalize the mean-shift idea by constraining the search space of NNs using another source of knowledge so that NNs are far from the query while still being semantically related. We show that our method (1) outperforms MSF in SSL setting when the constraint utilizes a different augmentation of an image from the previous epoch, and (2) outperforms PAWS in semi-supervised setting with less training resources when the constraint ensures that the NNs have the same pseudo-label as the query.more » « less
-
Abstract Insect pests cause significant damage to food production, so early detection and efficient mitigation strategies are crucial. There is a continual shift toward machine learning (ML)‐based approaches for automating agricultural pest detection. Although supervised learning has achieved remarkable progress in this regard, it is impeded by the need for significant expert involvement in labeling the data used for model training. This makes real‐world applications tedious and oftentimes infeasible. Recently, self‐supervised learning (SSL) approaches have provided a viable alternative to training ML models with minimal annotations. Here, we present an SSL approach to classify 22 insect pests. The framework was assessed on raw and segmented field‐captured images using three different SSL methods, Nearest Neighbor Contrastive Learning of Visual Representations (NNCLR), Bootstrap Your Own Latent, and Barlow Twins. SSL pre‐training was done on ResNet‐18 and ResNet‐50 models using all three SSL methods on the original RGB images and foreground segmented images. The performance of SSL pre‐training methods was evaluated using linear probing of SSL representations and end‐to‐end fine‐tuning approaches. The SSL‐pre‐trained convolutional neural network models were able to perform annotation‐efficient classification. NNCLR was the best performing SSL method for both linear and full model fine‐tuning. With just 5% annotated images, transfer learning with ImageNet initialization obtained 74% accuracy, whereas NNCLR achieved an improved classification accuracy of 79% for end‐to‐end fine‐tuning. Models created using SSL pre‐training consistently performed better, especially under very low annotation, and were robust to object class imbalances. These approaches help overcome annotation bottlenecks and are resource efficient.more » « less
-
The need for manual and detailed annotations limits the applicability of supervised deep learning algorithms in medical image analyses, specifically in the field of pathology. Semi-supervised learning (SSL) provides an effective way for leveraging unlabeled data to relieve the heavy reliance on the amount of labeled samples when training a model. Although SSL has shown good performance, the performance of recent state-of-the-art SSL methods on pathology images is still under study. The problem for selecting the most optimal data to label for SSL is not fully explored. To tackle this challenge, we propose a semi-supervised active learning framework with a region-based selection criterion. This framework iteratively selects regions for an-notation query to quickly expand the diversity and volume of the labeled set. We evaluate our framework on a grey-matter/white-matter segmentation problem using gigapixel pathology images from autopsied human brain tissues. With only 0.1% regions labeled, our proposed algorithm can reach a competitive IoU score compared to fully-supervised learning and outperform the current state-of-the-art SSL by more than 10% of IoU score and DICE coefficient.more » « less
-
Puyol Anton, E; Pop, M; Sermesant, M; Campello, V; Lalande, A; Lekadir, K; Suinesiaputra, A; Camara, O; Young, A (Ed.)Cardiac cine magnetic resonance imaging (CMRI) is the reference standard for assessing cardiac structure as well as function. However, CMRI data presents large variations among different centers, vendors, and patients with various cardiovascular diseases. Since typical deep-learning-based segmentation methods are usually trained using a limited number of ground truth annotations, they may not generalize well to unseen MR images, due to the variations between the training and testing data. In this study, we proposed an approach towards building a generalizable deep-learning-based model for cardiac structure segmentations from multi-vendor,multi-center and multi-diseases CMRI data. We used a novel combination of image augmentation and a consistency loss function to improve model robustness to typical variations in CMRI data. The proposed image augmentation strategy leverages un-labeled data by a) using CycleGAN to generate images in different styles and b) exchanging the low-frequency features of images from different vendors. Our model architecture was based on an attention-gated U-Net model that learns to focus on cardiac structures of varying shapes and sizes while suppressing irrelevant regions. The proposed augmentation and consistency training method demonstrated improved performance on CMRI images from new vendors and centers. When evaluated using CMRI data from 4 vendors and 6 clinical center, our method was generally able to produce accurate segmentations of cardiac structures.more » « less
An official website of the United States government

