skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Generalizable Deep-Learning Approach for Cardiac Magnetic Resonance Image Segmentation Using Image Augmentation and Attention U-Net
Cardiac cine magnetic resonance imaging (CMRI) is the reference standard for assessing cardiac structure as well as function. However, CMRI data presents large variations among different centers, vendors, and patients with various cardiovascular diseases. Since typical deep-learning-based segmentation methods are usually trained using a limited number of ground truth annotations, they may not generalize well to unseen MR images, due to the variations between the training and testing data. In this study, we proposed an approach towards building a generalizable deep-learning-based model for cardiac structure segmentations from multi-vendor,multi-center and multi-diseases CMRI data. We used a novel combination of image augmentation and a consistency loss function to improve model robustness to typical variations in CMRI data. The proposed image augmentation strategy leverages un-labeled data by a) using CycleGAN to generate images in different styles and b) exchanging the low-frequency features of images from different vendors. Our model architecture was based on an attention-gated U-Net model that learns to focus on cardiac structures of varying shapes and sizes while suppressing irrelevant regions. The proposed augmentation and consistency training method demonstrated improved performance on CMRI images from new vendors and centers. When evaluated using CMRI data from 4 vendors and 6 clinical center, our method was generally able to produce accurate segmentations of cardiac structures.  more » « less
Award ID(s):
1663747
PAR ID:
10295354
Author(s) / Creator(s):
;
Editor(s):
Puyol Anton, E; Pop, M; Sermesant, M; Campello, V; Lalande, A; Lekadir, K; Suinesiaputra, A; Camara, O; Young, A
Date Published:
Journal Name:
Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges. STACOM 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abraham, Ajith; Pllana, Sabri; Casalino, Gabriella; Ma, Kun; Bajaj, Anu (Ed.)
    Precision in segmenting cardiac MR images is critical for accurately diagnosing cardiovascular diseases. Several deep learning models have been shown useful in segmenting the structure of the heart, such as atrium, ventricle and myocardium, in cardiac MR images. Given the diverse image quality in cardiac MRI scans from various clinical settings, it is currently uncertain how different levels of noise affect the precision of deep learning image segmentation. This uncertainty could potentially lead to bias in subsequent diagnoses. The goal of this study is to examine the effects of noise in cardiac MRI segmentation using deep learning. We employed the Automated Cardiac Diagnosis Challenge MRI dataset and augmented it with varying degrees of Rician noise during model training to test the model’s capability in segmenting heart structures. Three models, including TransUnet, SwinUnet, and Unet, were compared by calculating the SNR-Dice relations to evaluate the models' noise resilience. Results show that the TransUnet model, which combines CNN and Transformer architectures, demonstrated superior noise resilience. Noise augmentation during model training improved the models' noise resilience for segmentation. The findings under-score the critical role of deep learning models in adequately handling diverse noise conditions for the segmentation of heart structures in cardiac images. 
    more » « less
  2. Bernard, Olivier; Clarysse, Patrick; Duchateau, Nicolas; Ohayon, Jacques; Viallon, Magalie. (Ed.)
    In this work we present a machine learning model to segment long axis magnetic resonance images of the left ventricle (LV) and address the challenges encountered when, in doing so, a small training dataset is used. Our approach is based on a heart locator and an anatomically guided UNet model in which the UNet is followed by a B-Spline head to condition training. The model is developed using transfer learning, which enabled the training and testing of the proposed strategy from a small swine dataset. The segmented LV cavity and myocardium in the long axis view show good agreement with ground truth segmentations at different cardiac phases based on the Dice similarity coefficient. In addition the model provides a measure of segmentations' uncertainty, which can then be incorporated while developing LV computational models and indices of cardiac performance based on the segmented images. Finally, several challenges related to long axis, as opposed to short axis, image segmentation are highlighted, including proposed solutions. 
    more » « less
  3. Abstract Computational fluid dynamics (CFD) modeling of left ventricle (LV) flow combined with patient medical imaging data has shown great potential in obtaining patient-specific hemodynamics information for functional assessment of the heart. A typical model construction pipeline usually starts with segmentation of the LV by manual delineation followed by mesh generation and registration techniques using separate software tools. However, such approaches usually require significant time and human efforts in the model generation process, limiting large-scale analysis. In this study, we propose an approach toward fully automating the model generation process for CFD simulation of LV flow to significantly reduce LV CFD model generation time. Our modeling framework leverages a novel combination of techniques including deep-learning based segmentation, geometry processing, and image registration to reliably reconstruct CFD-suitable LV models with little-to-no user intervention.1 We utilized an ensemble of two-dimensional (2D) convolutional neural networks (CNNs) for automatic segmentation of cardiac structures from three-dimensional (3D) patient images and our segmentation approach outperformed recent state-of-the-art segmentation techniques when evaluated on benchmark data containing both magnetic resonance (MR) and computed tomography(CT) cardiac scans. We demonstrate that through a combination of segmentation and geometry processing, we were able to robustly create CFD-suitable LV meshes from segmentations for 78 out of 80 test cases. Although the focus on this study is on image-to-mesh generation, we demonstrate the feasibility of this framework in supporting LV hemodynamics modeling by performing CFD simulations from two representative time-resolved patient-specific image datasets. 
    more » « less
  4. Data fusion techniques have gained special interest in remote sensing due to the available capabilities to obtain measurements from the same scene using different instruments with varied resolution domains. In particular, multispectral (MS) and hyperspectral (HS) imaging fusion is used to generate high spatial and spectral images (HSEI). Deep learning data fusion models based on Long Short Term Memory (LSTM) and Convolutional Neural Networks (CNN) have been developed to achieve such task.In this work, we present a Multi-Level Propagation Learning Network (MLPLN) based on a LSTM model but that can be trained with variable data sizes in order achieve the fusion process. Moreover, the MLPLN provides an intrinsic data augmentation feature that reduces the required number of training samples. The proposed model generates a HSEI by fusing a high-spatial resolution MS image and a low spatial resolution HS image. The performance of the model is studied and compared to existing CNN and LSTM approaches by evaluating the quality of the fused image using the structural similarity metric (SSIM). The results show that an increase in the SSIM is still obtained while reducing of the number of training samples to train the MLPLN model. 
    more » « less
  5. 3D image reconstruction from a limited number of 2D images has been a long-standing challenge in computer vision and image analysis. While deep learning-based approaches have achieved impressive performance in this area, existing deep networks often fail to effectively utilize the shape structures of objects presented in images. As a result, the topology of reconstructed objects may not be well preserved, leading to the presence of artifacts such as discontinuities, holes, or mismatched connections between different parts. In this paper, we propose a shape-aware network based on diffusion models for 3D image reconstruction, named SADIR, to address these issues. In contrast to previous methods that primarily rely on spatial correlations of image intensities for 3D reconstruction, our model leverages shape priors learned from the training data to guide the reconstruction process. To achieve this, we develop a joint learning network that simultaneously learns a mean shape under deformation models. Each reconstructed image is then considered as a deformed variant of the mean shape. We validate our model, SADIR, on both brain and cardiac magnetic resonance images (MRIs). Experimental results show that our method outperforms the baselines with lower reconstruction error and better preservation of the shape structure of objects within the images. 
    more » « less