Abraham, Ajith; Pllana, Sabri; Casalino, Gabriella; Ma, Kun; Bajaj, Anu
(Ed.)
Precision in segmenting cardiac MR images is critical for accurately diagnosing cardiovascular diseases. Several deep learning models have been shown useful in segmenting the structure of the heart, such as atrium, ventricle and myocardium, in cardiac MR images. Given the diverse image quality in cardiac MRI scans from various clinical settings, it is currently uncertain how different levels of noise affect the precision of deep learning image segmentation. This uncertainty could potentially lead to bias in subsequent diagnoses. The goal of this study is to examine the effects of noise in cardiac MRI segmentation using deep learning. We employed the Automated Cardiac Diagnosis Challenge MRI dataset and augmented it with varying degrees of Rician noise during model training to test the model’s capability in segmenting heart structures. Three models, including TransUnet, SwinUnet, and Unet, were compared by calculating the SNR-Dice relations to evaluate the models' noise resilience. Results show that the TransUnet model, which combines CNN and Transformer architectures, demonstrated superior noise resilience. Noise augmentation during model training improved the models' noise resilience for segmentation. The findings under-score the critical role of deep learning models in adequately handling diverse noise conditions for the segmentation of heart structures in cardiac images.
more »
« less