skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hurricane Scenario Generation for Uncertainty Modeling of Coastal and Inland Flooding
Hurricanes often induce catastrophic flooding due to both storm surge near the coast, and pluvial and fluvial flooding further inland. In an effort to contribute to uncertainty quantification of impending flood events, we propose a probabilistic scenario generation scheme for hurricane flooding using state-of-art hydrological models to forecast both inland and coastal flooding. The hurricane scenario generation scheme incorporates locational uncertainty in hurricane landfall locations. For an impending hurricane, we develop a method to generate multiple scenarios by the predicated landfall location and adjusting corresponding meteorological characteristics such as precipitation. By combining inland and coastal flooding models, we seek to provide a comprehensive understanding of potential flood scenarios for an impending hurricane. To demonstrate the modeling approach, we use real-world data from the Southeast Texas region in our case study.  more » « less
Award ID(s):
1940308
PAR ID:
10291200
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Climate
Volume:
3
ISSN:
2624-9553
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a rigorous modeling and methodological effort that integrates statistical implementation of hydrology models in predicting inland and coastal flood scenarios due to hurricanes and a scenario-based stochastic integer programming model which suggests resource and staging area decisions in the first stage and the evacuation decisions in the second stage. This novel study combines physics-based flood prediction models and stochastic optimization for large- scale multi-facility coordination of hospital and nursing home evacuations before impending hurricanes. The optimization model considers scenario-dependent evacuation demand, transport vehicles with varying capacities, and both critical and non-critical patients. Utilizing Hurricane Harvey of 2017 as a case study and actual healthcare facility locations in southeast Texas, we explore various evacuation policies, demonstrating the impact of routing strategies, staging area decisions, flood thresholds, and receiving facility capacities on evacuation outcomes. One of the findings is that choosing staging area(s) and deploying evacuation vehicles optimally considering the uncertainty of the hurricane’s path at the time of decision making could have significant effect on the total cost of the operation and evacuation time experienced by the evacuees. We also show the non-negligible value of the scenario-based staging and routing solution conservatively calculated in relation to a single scenario solution using the concept of value of stochastic solution. 
    more » « less
  2. Rising sea levels have increased flood risk in coastal communities on both the east and west coasts of the USA. The goal of this analysis is to approximate flood defense costs from cyclonic flooding as a partial means to evaluate the resilience of coastal communities. Storm surge models were previously constructed via an established approach to represent historical and future coastal Louisiana landscapes and associated flood patterns. Coastal flooding was also previously simulated via a suite of 14 hurricanes. Approximate levee heights surrounding Lafitte, Louisiana, are calculated from the surge and wave output of Hurricane Isaac, the predominated hurricane in the Lafitte area for all years examined (NAVD88, m): 1.68 (1930), 2.92 (1970), 3.30 (1990), 4.82 (2010), 5.93 (2030), 6.57 (2050), 7.16 (2070), 7.70 (2090), and 8.22 (2110). Approximate costs per person are also calculated (2010 USD): $49,500 (1930), $41,400 (1970), $37,500 (1990), $181,600 (2010), $223,600 (2030), $247,800 (2050), $269,900 (2070), $290,100 (2090), and $309,800 (2110). The Gulf of Mexico (GOM) migrated 7.4 km inland within the Louisiana Barataria coastal basin between 1973 and 2010. For each person in Lafitte, flood defense costs increased approximately (2010 USD) $19,000 per person per kilometer inland migration of the GOM from 1973 to 2010. The methodology developed in this case study effectively connects wetland loss with increased flood defense costs and can be applied to communities with similar challenges. 
    more » « less
  3. null (Ed.)
    This paper proposes a two-stage stochastic mixed integer programming framework for patient evacuation. While minimizing the expected total cost of patient evacuation operations, the model determines the location of staging areas and the number of emergency medical service (EMS) vehicles to mobilize in the first stage, and the EMS vehicle routing assignments in the second stage. A real-world data from Southeast Texas region is used to demonstrate our modeling approach. To provide a more pragmatic solution to the patient evacuation problem, we attempt to create comprehensive hurricane instances by integrating the publicly available state-of-art hydrology models for surge, Sea, Lake Ocean and Overland Surge for Hurricanes (SLOSH), and for streamflow, National Water Model (NWM), prediction. The surge product captures potential flooding in coastal region while the streamflow product predicts inland flooding. The results exhibit the importance of the integrated approach in patient evacuation planning, provide guidance on flood mapping and prove the potential benefit of comprehensive approach in scenario generation. 
    more » « less
  4. Floods are often associated with hurricanes making landfall. When tropical cyclones/hurricanes make landfall, they are usually accompanied by heavy rainfall and storm surges that inundate coastal areas. The worst natural disaster in the United States, in terms of loss of life and property damage, was caused by hurricane storm surges and their associated coastal flooding. To monitor coastal flooding in the areas affected by hurricanes, we used data from sensors aboard the operational Polar-orbiting and Geostationary Operational Environmental Satellites. This study aims to apply a downscaling model to recent severe coastal flooding events caused by hurricanes. To demonstrate how high-resolution 3D flood mapping can be made from moderate-resolution operational satellite observations, the downscaling model was applied to the catastrophic coastal flooding in Florida due to Hurricane Ian and in New Orleans due to Hurricanes Ida and Laura. The floodwater fraction data derived from the SNPP/NOAA-20 VIIRS (Visible Infrared Imaging Radiometer Suite) observations at the original 375 m resolution were input into the downscaling model to obtain 3D flooding information at 30 m resolution, including flooding extent, water surface level and water depth. Compared to a 2D flood extent map at the VIIRS’ original 375 m resolution, the downscaled 30 m floodwater depth maps, even when shown as 2D images, can provide more details about floodwater distribution, while 3D visualizations can demonstrate floodwater depth more clearly in relative to the terrain and provide a more direct perception of the inundation situations caused by hurricanes. The use of 3D visualization can help users clearly see floodwaters occurring over various types of terrain conditions, thus identifying a hazardous flood from non-hazardous flood types. Furthermore, 3D maps displaying floodwater depth may provide additional information for rescue efforts and damage assessments. The downscaling model can help enhance the capabilities of moderate-to-coarse resolution sensors, such as those used in operational weather satellites, flood detection and monitoring. 
    more » « less
  5. null (Ed.)
    Flooding during extreme weather events damages critical infrastructure, property, and threatens lives. Hurricane María devastated Puerto Rico (PR) on 20 September 2017. Sixty-four deaths were directly attributable to the flooding. This paper describes the development of a hydrologic model using the Gridded Surface Subsurface Hydrologic Analysis (GSSHA), capable of simulating flood depth and extent for the Añasco coastal flood plain in Western PR. The purpose of the study was to develop a numerical model to simulate flooding from extreme weather events and to evaluate the impacts on critical infrastructure and communities; Hurricane María is used as a case study. GSSHA was calibrated for Irma, a Category 3 hurricane, which struck the northeastern corner of the island on 7 September 2017, two weeks before Hurricane María. The upper Añasco watershed was calibrated using United States Geological Survey (USGS) stream discharge data. The model was validated using a storm of similar magnitude on 11–13 December 2007. Owing to the damage sustained by PR’s WSR-88D weather radar during Hurricane María, rainfall was estimated in this study using the Weather Research Forecast (WRF) model. Flooding in the coastal floodplain during Hurricane María was simulated using three methods: (1) Use of observed discharge hydrograph from the upper watershed as an inflow boundary condition for the coastal floodplain area, along with the WRF rainfall in the coastal flood plain; (2) Use of WRF rainfall to simulate runoff in the upper watershed and coastal flood plain; and (3) Similar to approach (2), except the use of bias-corrected WRF rainfall. Flooding results were compared with forty-two values of flood depth obtained during face-to-face interviews with residents of the affected communities. Impacts on critical infrastructure (water, electric, and public schools) were evaluated, assuming any structure exposed to 20 cm or more of flooding would sustain damage. Calibration equations were also used to improve flood depth estimates. Our model included the influence of storm surge, which we found to have a minimal effect on flood depths within the study area. Water infrastructure was more severely impacted by flooding than electrical infrastructure. From these findings, we conclude that the model developed in this study can be used with sufficient accuracy to identify infrastructure affected by future flooding events. 
    more » « less