skip to main content


Title: Hurricane Scenario Generation for Uncertainty Modeling of Coastal and Inland Flooding
Hurricanes often induce catastrophic flooding due to both storm surge near the coast, and pluvial and fluvial flooding further inland. In an effort to contribute to uncertainty quantification of impending flood events, we propose a probabilistic scenario generation scheme for hurricane flooding using state-of-art hydrological models to forecast both inland and coastal flooding. The hurricane scenario generation scheme incorporates locational uncertainty in hurricane landfall locations. For an impending hurricane, we develop a method to generate multiple scenarios by the predicated landfall location and adjusting corresponding meteorological characteristics such as precipitation. By combining inland and coastal flooding models, we seek to provide a comprehensive understanding of potential flood scenarios for an impending hurricane. To demonstrate the modeling approach, we use real-world data from the Southeast Texas region in our case study.  more » « less
Award ID(s):
1940308
NSF-PAR ID:
10291200
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Climate
Volume:
3
ISSN:
2624-9553
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper proposes a two-stage stochastic mixed integer programming framework for patient evacuation. While minimizing the expected total cost of patient evacuation operations, the model determines the location of staging areas and the number of emergency medical service (EMS) vehicles to mobilize in the first stage, and the EMS vehicle routing assignments in the second stage. A real-world data from Southeast Texas region is used to demonstrate our modeling approach. To provide a more pragmatic solution to the patient evacuation problem, we attempt to create comprehensive hurricane instances by integrating the publicly available state-of-art hydrology models for surge, Sea, Lake Ocean and Overland Surge for Hurricanes (SLOSH), and for streamflow, National Water Model (NWM), prediction. The surge product captures potential flooding in coastal region while the streamflow product predicts inland flooding. The results exhibit the importance of the integrated approach in patient evacuation planning, provide guidance on flood mapping and prove the potential benefit of comprehensive approach in scenario generation. 
    more » « less
  2. Rising sea levels have increased flood risk in coastal communities on both the east and west coasts of the USA. The goal of this analysis is to approximate flood defense costs from cyclonic flooding as a partial means to evaluate the resilience of coastal communities. Storm surge models were previously constructed via an established approach to represent historical and future coastal Louisiana landscapes and associated flood patterns. Coastal flooding was also previously simulated via a suite of 14 hurricanes. Approximate levee heights surrounding Lafitte, Louisiana, are calculated from the surge and wave output of Hurricane Isaac, the predominated hurricane in the Lafitte area for all years examined (NAVD88, m): 1.68 (1930), 2.92 (1970), 3.30 (1990), 4.82 (2010), 5.93 (2030), 6.57 (2050), 7.16 (2070), 7.70 (2090), and 8.22 (2110). Approximate costs per person are also calculated (2010 USD): $49,500 (1930), $41,400 (1970), $37,500 (1990), $181,600 (2010), $223,600 (2030), $247,800 (2050), $269,900 (2070), $290,100 (2090), and $309,800 (2110). The Gulf of Mexico (GOM) migrated 7.4 km inland within the Louisiana Barataria coastal basin between 1973 and 2010. For each person in Lafitte, flood defense costs increased approximately (2010 USD) $19,000 per person per kilometer inland migration of the GOM from 1973 to 2010. The methodology developed in this case study effectively connects wetland loss with increased flood defense costs and can be applied to communities with similar challenges. 
    more » « less
  3. Floods are often associated with hurricanes making landfall. When tropical cyclones/hurricanes make landfall, they are usually accompanied by heavy rainfall and storm surges that inundate coastal areas. The worst natural disaster in the United States, in terms of loss of life and property damage, was caused by hurricane storm surges and their associated coastal flooding. To monitor coastal flooding in the areas affected by hurricanes, we used data from sensors aboard the operational Polar-orbiting and Geostationary Operational Environmental Satellites. This study aims to apply a downscaling model to recent severe coastal flooding events caused by hurricanes. To demonstrate how high-resolution 3D flood mapping can be made from moderate-resolution operational satellite observations, the downscaling model was applied to the catastrophic coastal flooding in Florida due to Hurricane Ian and in New Orleans due to Hurricanes Ida and Laura. The floodwater fraction data derived from the SNPP/NOAA-20 VIIRS (Visible Infrared Imaging Radiometer Suite) observations at the original 375 m resolution were input into the downscaling model to obtain 3D flooding information at 30 m resolution, including flooding extent, water surface level and water depth. Compared to a 2D flood extent map at the VIIRS’ original 375 m resolution, the downscaled 30 m floodwater depth maps, even when shown as 2D images, can provide more details about floodwater distribution, while 3D visualizations can demonstrate floodwater depth more clearly in relative to the terrain and provide a more direct perception of the inundation situations caused by hurricanes. The use of 3D visualization can help users clearly see floodwaters occurring over various types of terrain conditions, thus identifying a hazardous flood from non-hazardous flood types. Furthermore, 3D maps displaying floodwater depth may provide additional information for rescue efforts and damage assessments. The downscaling model can help enhance the capabilities of moderate-to-coarse resolution sensors, such as those used in operational weather satellites, flood detection and monitoring. 
    more » « less
  4. Hurricane-induced storm surge and flooding often lead to the closures of evacuation routes, which can be disruptive for the victims trying to leave the impacted region. This problem becomes even more challenging when we consider the impact of sea level rise that happens due to global warming and other climate-related factors. As such, hurricane-induced storm surge elevations would increase nonlinearly when sea level rise lifts, flooding access to highways and bridge entrances, thereby reducing accessibility for affected census block groups to evacuate to hurricane shelters during hurricane landfall. This happened with the Category 5 Hurricane Michael which swept the east coast of Northwest Florida with long-lasting damage and impact on local communities and infrastructure. In this paper, we propose an integrated methodology that utilizes both sea level rise (SLR) scenario-informed storm surge simulations and floating catchment area models built in Geographical Information Systems (GIS). First, we set up sea level rise scenarios of 0, 0.5, 1, and 1.5 m with a focus on Hurricane Michael’s impact that led to the development of storm surge models. Second, these storm surge simulation outputs are fed into ArcGIS and floating catchment area-based scenarios are created to study the accessibility of shelters. Findings indicate that rural areas lost accessibility faster than urban areas due to a variety of factors including shelter distributions, and roadway closures as spatial accessibility to shelters for offshore populations was rapidly diminishing. We also observed that as inundation level increases, urban census block groups that are closer to the shelters get extremely high accessibility scores through FCA calculations compared to the other block groups. Results of this study could guide and help revise existing strategies for designing emergency response plans and update resilience action policies.

     
    more » « less
  5. Hurricane-induced storm surge and flooding often lead to the closures of evacuation routes, which can be disruptive for the victims trying to leave the impacted region. This problem becomes even more challenging when we consider the impact of sea level rise that happens due to global warming and other climate-related factors. As such, hurricane-induced storm surge elevations would increase nonlinearly when sea level rise lifts, flooding access to highways and bridge entrances, thereby reducing accessibility for affected census block groups to evacuate to hurricane shelters during hurricane landfall. This happened with the Category 5 Hurricane Michael which swept the east coast of Northwest Florida with long-lasting damage and impact on local communities and infrastructure. In this paper, we propose an integrated methodology that utilizes both sea level rise (SLR) scenario-informed storm surge simulations and floating catchment area models built in Geographical Information Systems (GIS). First, we set up sea level rise scenarios of 0, 0.5, 1, and 1.5 m with a focus on Hurricane Michael’s impact that led to the development of storm surge models. Second, these storm surge simulation outputs are fed into ArcGIS and floating catchment area-based scenarios are created to study the accessibility of shelters. Findings indicate that rural areas lost accessibility faster than urban areas due to a variety of factors including shelter distributions, and roadway closures as spatial accessibility to shelters for offshore populations was rapidly diminishing. We also observed that as inundation level increases, urban census block groups that are closer to the shelters get extremely high accessibility scores through FCA calculations compared to the other block groups. Results of this study could guide and help revise existing strategies for designing emergency response plans and update resilience action policies 
    more » « less