Title: High Resolution 3D Mapping of Hurricane Flooding from Moderate-Resolution Operational Satellites
Floods are often associated with hurricanes making landfall. When tropical cyclones/hurricanes make landfall, they are usually accompanied by heavy rainfall and storm surges that inundate coastal areas. The worst natural disaster in the United States, in terms of loss of life and property damage, was caused by hurricane storm surges and their associated coastal flooding. To monitor coastal flooding in the areas affected by hurricanes, we used data from sensors aboard the operational Polar-orbiting and Geostationary Operational Environmental Satellites. This study aims to apply a downscaling model to recent severe coastal flooding events caused by hurricanes. To demonstrate how high-resolution 3D flood mapping can be made from moderate-resolution operational satellite observations, the downscaling model was applied to the catastrophic coastal flooding in Florida due to Hurricane Ian and in New Orleans due to Hurricanes Ida and Laura. The floodwater fraction data derived from the SNPP/NOAA-20 VIIRS (Visible Infrared Imaging Radiometer Suite) observations at the original 375 m resolution were input into the downscaling model to obtain 3D flooding information at 30 m resolution, including flooding extent, water surface level and water depth. Compared to a 2D flood extent map at the VIIRS’ original 375 m resolution, the downscaled 30 m floodwater depth maps, even when shown as 2D images, can provide more details about floodwater distribution, while 3D visualizations can demonstrate floodwater depth more clearly in relative to the terrain and provide a more direct perception of the inundation situations caused by hurricanes. The use of 3D visualization can help users clearly see floodwaters occurring over various types of terrain conditions, thus identifying a hazardous flood from non-hazardous flood types. Furthermore, 3D maps displaying floodwater depth may provide additional information for rescue efforts and damage assessments. The downscaling model can help enhance the capabilities of moderate-to-coarse resolution sensors, such as those used in operational weather satellites, flood detection and monitoring. more »« less
Kim, Kyoung Yoon; Wu, Wen-Ying; Kutanoglu, Erhan; Hasenbein, John J.; Yang, Zong-Liang
(, Frontiers in Climate)
null
(Ed.)
Hurricanes often induce catastrophic flooding due to both storm surge near the coast, and pluvial and fluvial flooding further inland. In an effort to contribute to uncertainty quantification of impending flood events, we propose a probabilistic scenario generation scheme for hurricane flooding using state-of-art hydrological models to forecast both inland and coastal flooding. The hurricane scenario generation scheme incorporates locational uncertainty in hurricane landfall locations. For an impending hurricane, we develop a method to generate multiple scenarios by the predicated landfall location and adjusting corresponding meteorological characteristics such as precipitation. By combining inland and coastal flooding models, we seek to provide a comprehensive understanding of potential flood scenarios for an impending hurricane. To demonstrate the modeling approach, we use real-world data from the Southeast Texas region in our case study.
There is increasing evidence that climate change will lead to greater and more frequent extreme weather events, thus underscoring the importance of effectively communicating risks of record storm surges in coastal communities. This article reviews why risk communication often fails to convey the nature and risk of storm surge among the public and highlights the limitations of conventional (two-dimensional) storm surge flood maps. The research explores the potential of dynamic street-level, augmented scenes to increase the tangibility of these risks and foster a greater sense of agency among the public. The study focused on Sunset Park, a coastal community in southwest Brooklyn that is vulnerable to storm surges and flooding. Two different representations of flooding corresponding to a category three hurricane scenario were prepared: (1) a conventional two-dimensional flood map (“2D” control group) and (2) a, dynamic, street view simulation (“3D”test group). The street view simulations were found to be (1) more effective in conveying the magnitude of flooding and evacuation challenges, (2) easier to use for judging flood water depth (even without a flood depth legend), (3) capable of generating stronger emotional responses, and (4) perceived as more authoritative in nature
Wienhold, Kevin J.; Li, Dongfeng; Li, Wenzhao; Fang, Zheng N.
(, Hydrology)
The identification of flood hazards during emerging public safety crises such as hurricanes or flash floods is an invaluable tool for first responders and managers yet remains out of reach in any comprehensive sense when using traditional remote-sensing methods, due to cloud cover and other data-sourcing restrictions. While many remote-sensing techniques exist for floodwater identification and extraction, few studies demonstrate an up-to-day understanding with better techniques in isolating the spectral properties of floodwaters from collected data, which vary for each event. This study introduces a novel method for delineating near-real-time inundation flood extent and depth mapping for storm events, using an inexpensive unmanned aerial vehicle (UAV)-based multispectral remote-sensing platform, which was designed to be applicable for urban environments, under a wide range of atmospheric conditions. The methodology is demonstrated using an actual flooding-event—Hurricane Zeta during the 2020 Atlantic hurricane season. Referred to as the UAV and Floodwater Inundation and Depth Mapper (FIDM), the methodology consists of three major components, including aerial data collection, processing, and flood inundation (water surface extent) and depth mapping. The model results for inundation and depth were compared to a validation dataset and ground-truthing data, respectively. The results suggest that UAV-FIDM is able to predict inundation with a total error (sum of omission and commission errors) of 15.8% and produce flooding depth estimates that are accurate enough to be actionable to determine road closures for a real event.
Shamsu, Madinah; Akbar, Muhammad
(, Journal of Marine Science and Engineering)
Hurricane storm surges are influenced by wind intensity, forward speed, width and slope of the ocean bottom, central pressure, angle of approach, shape of coastal lines, local features, and storm size. A numerical experiment is conducted using the Advanced Circulation + Simulation and Simulating Waves Nearshore (ADCIRC + SWAN) coupled model for understanding the effects of wind intensity, forward speed, and wave on the storm surges caused by Hurricane Harvey. The ADCIRC + SWAN is used to simulate hurricane storm surges and waves. The wind fields of Hurricane Harvey were reconstructed from observed data, aided by a variety of methodologies and analyses conducted by Ocean Weather Inc (OWI) after the event. These reconstructed wind fields were used as the meteorological forcing in the base case in ADCIRC+SWAN to investigate the storm surges caused by the hurricane. Hurricane Harvey was the second most costly hurricane in the United States, causing severe urban flooding by dropping more than 60 inches of rainfall in Texas. The hurricane made three landfalls, with its first landfall as a Category 4 based on the Saffir–Simpson Hurricane Wind Scale (SSHWS), with wind intensities of 212.98 km/h (59 m/s). The storm surges caused by Hurricane Harvey were unique due to the slow speed, crooked tracks, triple landfalls in the USA, and excessive rain. The model’s storm surge and wave results were compared against observed data. High water marks at 21 locations and time series at 12 National Oceanic and Atmospheric Administration (NOAA) gauges were compared with the generated results. Several cases were investigated by increasing or decreasing the wind intensity or hurricane forward speed by 25% of the OWI wind and pressure data. The effects of the wave were analyzed by comparing the results obtained from ADCIRC + SWAN (with waves) and ADCIRC (without waves) models. The study found that the changes in wind intensity had the most significant effect on storm surges, followed by wave and forward speed changes. This study signifies the importance of considering these factors to enhance accuracy in predicting storm surges.
Since 2 June 2020, unusual heavy and continuous rainfall from the Asian summer monsoon rainy season caused widespread catastrophic floods in many Asian countries, including primarily the two most populated countries, China and India. To detect and monitor the floods and estimate the potentially affected population, data from sensors aboard the operational polar-orbiting satellites Suomi National Polar-Orbiting Partnership (S-NPP) and National Oceanic and Atmospheric Administration (NOAA)-20 were used. The Visible Infrared Imaging Radiometer Suite (VIIRS) with a spatial resolution of 375 m available twice per day aboard these two satellites can observe floodwaters over large spatial regions. The flood maps derived from the VIIRS imagery provide a big picture over the entire flooding regions, and demonstrate that, in July, in China, floods mainly occurred across the Yangtze River, Hui River and their tributaries. The VIIRS 5-day composite flood maps, along with a population density dataset, were combined to estimate the population potentially exposed (PPE) to flooding. We report here on the procedure to combine such data using the Zonal Statistic Function from the ArcGIS Spatial Analyst toolbox. Based on the flood extend for July 2020 along with the population density dataset, the Jiangxi and Anhui provinces were the most affected regions with more than 10 million people in Jingdezhen and Shangrao in Jiangxi province, and Fuyang and Luan in Anhui province, and it is estimated that about 55 million people in China might have been affected by the floodwaters. In addition to China, several other countries, including India, Bangladesh, and Myanmar, were also severely impacted. In India, the worst inundated states include Utter Pradesh, Bihar, Assam, and West Bengal, and it is estimated that about 40 million people might have been affected by severe floods, mainly in the northern states of Bihar, Assam, and West Bengal. The most affected country was Bangladesh, where one third of the country was underwater, and the estimated population potentially exposed to floods is about 30 million in Bangladesh.
@article{osti_10398251,
place = {Country unknown/Code not available},
title = {High Resolution 3D Mapping of Hurricane Flooding from Moderate-Resolution Operational Satellites},
url = {https://par.nsf.gov/biblio/10398251},
DOI = {10.3390/rs14215445},
abstractNote = {Floods are often associated with hurricanes making landfall. When tropical cyclones/hurricanes make landfall, they are usually accompanied by heavy rainfall and storm surges that inundate coastal areas. The worst natural disaster in the United States, in terms of loss of life and property damage, was caused by hurricane storm surges and their associated coastal flooding. To monitor coastal flooding in the areas affected by hurricanes, we used data from sensors aboard the operational Polar-orbiting and Geostationary Operational Environmental Satellites. This study aims to apply a downscaling model to recent severe coastal flooding events caused by hurricanes. To demonstrate how high-resolution 3D flood mapping can be made from moderate-resolution operational satellite observations, the downscaling model was applied to the catastrophic coastal flooding in Florida due to Hurricane Ian and in New Orleans due to Hurricanes Ida and Laura. The floodwater fraction data derived from the SNPP/NOAA-20 VIIRS (Visible Infrared Imaging Radiometer Suite) observations at the original 375 m resolution were input into the downscaling model to obtain 3D flooding information at 30 m resolution, including flooding extent, water surface level and water depth. Compared to a 2D flood extent map at the VIIRS’ original 375 m resolution, the downscaled 30 m floodwater depth maps, even when shown as 2D images, can provide more details about floodwater distribution, while 3D visualizations can demonstrate floodwater depth more clearly in relative to the terrain and provide a more direct perception of the inundation situations caused by hurricanes. The use of 3D visualization can help users clearly see floodwaters occurring over various types of terrain conditions, thus identifying a hazardous flood from non-hazardous flood types. Furthermore, 3D maps displaying floodwater depth may provide additional information for rescue efforts and damage assessments. The downscaling model can help enhance the capabilities of moderate-to-coarse resolution sensors, such as those used in operational weather satellites, flood detection and monitoring.},
journal = {Remote Sensing},
volume = {14},
number = {21},
author = {Li, Sanmei and Goldberg, Mitchell and Kalluri, Satya and Lindsey, Daniel T. and Sjoberg, Bill and Zhou, Lihang and Helfrich, Sean and Green, David and Borges, David and Yang, Tianshu and Sun, Donglian},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.