skip to main content


Title: The Learner Data Institute—Conceptualization: A Progress Report
This paper provides a progress report on the first 18 months of Phase 1, the conceptualization phase, of the Learner Data Institute (LDI; www.learnerdatainstitute.org). LDI is currently in Phase 1, the conceptualization phase, to be followed by Phase 2, the institute or convergence phase. The current 2-year conceptualization phase has two major goals: (1) develop, implement, evaluate, and refine a framework for data-intensive science and engineering for the future institute, and (2) use the framework to provide prototype solutions, based on data, data science, and science convergence, to a number of core challenges in learning science and engineering. By targeting a critical mass of key challenges that are at a tipping point, LDI aims to start a chain reaction that will transform the whole learning ecosystem. We will emphasize here the key elements of the LDI science convergence framework that our team developed, implemented, and now is in the process of evaluating and refining. We highlight important outcomes of the convergence framework and related processes, including a 5-year plan for the institute phase and data-intensive prototype solutions to transform the learning ecosystem.  more » « less
Award ID(s):
1934745
NSF-PAR ID:
10291239
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the 2nd Learner Data Institute Workshop in Conjunction with The 14th International Educational Data Mining Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper provides a progress report on the first 18 months of Phase 1, the conceptualization phase, of the Learner Data Institute (LDI; www.learnerdatainstitute.org). LDI is currently in Phase 1, the conceptualization phase, to be followed by Phase 2, the institute or convergence phase. The current 2-year conceptualization phase has two major goals: (1) develop, implement, evaluate, and refine a framework for data-intensive science and engineering for the future institute, and (2) use the framework to provide prototype solutions, based on data, data science, and science convergence, to a number of core challenges in learning science and engineering. By targeting a critical mass of key challenges that are at a tipping point, LDI aims to start a chain reaction that will transform the whole learning ecosystem. We will emphasize here the key elements of the LDI science convergence framework that our team developed, implemented, and now is in the process of evaluating and refining. We highlight important outcomes of the convergence framework and related processes, including a 5-year plan for the institute phase and data-intensive prototype solutions to transform the learning ecosystem. 
    more » « less
  2. This paper provides an update of the Learner Data Institute (LDI; www.learnerdatainstitute.org) which is now in its third year since conceptualization. Funded as a conceptualization project, the LDI’s first two years had two major goals: (1) develop, implement, evaluate, and refine a framework for data-intensive science and engineering and (2) use the framework to start developing prototype solutions, based on data, data science, and science convergence, to a number of core challenges in learning science and engineering. One major focus in the third, current year is synthesizing efforts from the first two years to identify new opportunities for future research by various mutual interest groups within LDI, which have focused on developing a particular prototype solution to one or more related core challenges in learning science and engineering. In addition to highlighting emerging data-intensive solutions and innovations from the LDI’s first two years, including places where LDI researchers have received additional funding for future research, we highlight here various core challenges our team has identified as being at a “tipping point.” Tipping point challenges are those for which timely investment in data-intensive approaches has the maximum potential for a transformative effect. 
    more » « less
  3. There have been numerous demands for enhancements in the way undergraduate learning occurs today, especially at a time when the value of higher education continues to be called into question (The Boyer 2030 Commission, 2022). One type of demand has been for the increased integration of subjects/disciplines around relevant issues/topics—with a more recent trend of seeking transdisciplinary learning experiences for students (Sheets, 2016; American Association for the Advancement of Science, 2019). Transdisciplinary learning can be viewed as the holistic way of working equally across disciplines to transcend their own disciplinary boundaries to form new conceptual understandings as well as develop new ways in which to address complex topics or challenges (Ertas, Maxwell, Rainey, & Tanik, 2003; Park & Son, 2010). This transdisciplinary approach can be important as humanity’s problems are not typically discipline specific and require the convergence of competencies to lead to innovative thinking across fields of study. However, higher education continues to be siloed which makes the authentic teaching of converging topics, such as innovation, human-technology interactions, climate concerns, or harnessing the data revolution, organizationally difficult (Birx, 2019; Serdyukov, 2017). For example, working across a university’s academic units to collaboratively teach, or co-teach, around topics of convergence are likely to be rejected by the university systems that have been built upon longstanding traditions. While disciplinary expertise is necessary and one of higher education’s strengths, the structures and academic rigidity that come along with the disciplinary silos can prevent modifications/improvements to the roles of academic units/disciplines that could better prepare students for the future of both work and learning. The balancing of disciplinary structure with transdisciplinary approaches to solving problems and learning is a challenge that must be persistently addressed. These institutional challenges will only continue to limit universities seeking toward scaling transdisciplinary programs and experimenting with novel ways to enhance the value of higher education for students and society. This then restricts innovations to teaching and also hinders the sharing of important practices across disciplines. To address these concerns, a National Science Foundation Improving Undergraduate STEM Education project team, which is the topic of this paper, has set the goal of developing/implementing/testing an authentically transdisciplinary, and scalable educational model in an effort to help guide the transformation of traditional undergraduate learning to span academics silos. This educational model, referred to as the Mission, Meaning, Making (M3) program, is specifically focused on teaching the crosscutting practices of innovation by a) implementing co-teaching and co-learning from faculty and students across different academic units/colleges as well as b) offering learning experiences spanning multiple semesters that immerse students in a community that can nourish both their learning and innovative ideas. As a collaborative initiative, the M3 program is designed to synergize key strengths of an institution’s engineering/technology, liberal arts, and business colleges/units to create a transformative undergraduate experience focused on the pursuit of innovation—one that reaches the broader campus community, regardless of students’ backgrounds or majors. Throughout the development of this model, research was conducted to help identify institutional barriers toward creating such a cross-college program at a research-intensive public university along with uncovering ways in which to address these barriers. While data can show how students value and enjoy transdisciplinary experiences, universities are not likely to be structured in a way to support these educational initiatives and they will face challenges throughout their lifespan. These challenges can result from administration turnover whereas mutual agreements across colleges may then vanish, continued disputes over academic territory, and challenges over resource allotments. Essentially, there may be little to no incentives for academic departments to engage in transdisciplinary programming within the existing structures of higher education. However, some insights and practices have emerged from this research project that can be useful in moving toward transdisciplinary learning around topics of convergence. Accordingly, the paper will highlight features of an educational model that spans disciplines along with the workarounds to current institutional barriers. This paper will also provide lessons learned related to 1) the potential pitfalls with educational programming becoming “un-disciplinary” rather than transdisciplinary, 2) ways in which to incentivize departments/faculty to engage in transdisciplinary efforts, and 3) new structures within higher education that can be used to help faculty/students/staff to more easily converge to increase access to learning across academic boundaries. 
    more » « less
  4. null (Ed.)
    Long term sustainability of the high energy physics (HEP) research software ecosystem is essential for the field. With upgrades and new facilities coming online throughout the 2020s this will only become increasingly relevant throughout this decade. Meeting this sustainability challenge requires a workforce with a combination of HEP domain knowledge and advanced software skills. The required software skills fall into three broad groups. The first is fundamental and generic software engineering (e.g. Unix, version control,C++, continuous integration). The second is knowledge of domain specific HEP packages and practices (e.g., the ROOT data format and analysis framework). The third is more advanced knowledge involving more specialized techniques. These include parallel programming, machine learning and data science tools, and techniques to preserve software projects at all scales. This paper dis-cusses the collective software training program in HEP and its activities led by the HEP Software Foundation (HSF) and the Institute for Research and Innovation in Software in HEP (IRIS-HEP). The program equips participants with an array of software skills that serve as ingredients from which solutions to the computing challenges of HEP can be formed. Beyond serving the community by ensuring that members are able to pursue research goals, this program serves individuals by providing intellectual capital and transferable skills that are becoming increasingly important to careers in the realm of software and computing, whether inside or outside HEP 
    more » « less
  5. null (Ed.)
    Long term sustainability of the high energy physics (HEP) research software ecosystem is essential for the field. With upgrades and new facilities coming online throughout the 2020s this will only become increasingly relevant throughout this decade. Meeting this sustainability challenge requires a workforce with a combination of HEP domain knowledge and advanced software skills. The required software skills fall into three broad groups. The first is fundamental and generic software engineering (e.g. Unix, version control,C++, continuous integration). The second is knowledge of domain specific HEP packages and practices (e.g., the ROOT data format and analysis framework). The third is more advanced knowledge involving more specialized techniques. These include parallel programming, machine learning and data science tools, and techniques to preserve software projects at all scales. This paper dis-cusses the collective software training program in HEP and its activities led by the HEP Software Foundation (HSF) and the Institute for Research and Innovation in Software in HEP (IRIS-HEP). The program equips participants with an array of software skills that serve as ingredients from which solutions to the computing challenges of HEP can be formed. Beyond serving the community by ensuring that members are able to pursue research goals, this program serves individuals by providing intellectual capital and transferable skills that are becoming increasingly important to careers in the realm of software and computing, whether inside or outside HEP 
    more » « less