skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ecosystem Genomics Convergence Institute Report 2024
From May 13-15, 2024, the University of Arizona Ecosystem Genomics Community, participated in the annual Convergence Institute. The Convergence Institute is a 3-day summit meeting that is equal parts science, training, inclusion, professional development, evaluation, and science communication. A student pre-session offers professional development on a variety of topics. Each year, participants hear from a rotating panel about the challenges of ecosystem genomics, then present and– depending on their cohort– receive feedback on their proposed or completed summer research experiences. Students who have completed their NRT requirements are invited to help lead sessions and introduce presentation themes. This report was written by students participating in the team skills and writing workshops presented during the pre-session by Dr. Anne Mook, Mook, a senior team scientist at the Institute for Research in the Social Sciences (IRISS) at Colorado State University. The report includes an executive summary, general components of the institute, objectives, 2024 institute overview, conclusions, a participant directory, organizers and panelist directory, presentation topics by theme and key takeaways, relevance of convergence research, future directions, defining and evaluating Ecosystem Genomics as an emerging field and Appendices.  more » « less
Award ID(s):
2022055
PAR ID:
10536997
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Ingram, Heather; Arnold, Anne; Mook, Anne; Saleska, Scott
Publisher / Repository:
ecosystemgenomics.arizona.edu
Date Published:
Subject(s) / Keyword(s):
ecosystem genomics environment biology entomology bioengineering genetics climate sockeye plant sciences agriculture natural resource hydrology, atmospheric science
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    At the start of their work for the National Science Foundation’s Revolutionizing Engineering Departments (RED) Program (IUSE/Professional Formation of Engineers, NSF 19-614), RED teams face a variety of challenges. Not only must they craft a shared vision for their projects and create strategic partnerships across their campuses to move the project forward, they must also form a new team and communicate effectively within the team. Our work with RED teams over the past 5 years has highlighted the common challenges these teams face at the start, and for that reason, we have developed the RED Start Up Session, a ½ day workshop that establishes best practices for RED teams’ work and allows for early successes in these five year projects. As the RED Participatory Action Research team (REDPAR)--comprised of individuals from Rose-Hulman Institute of Technology and the University of Washington--we have taken the research data collected as we work with RED teams and translated it into practical strategies that can benefit RED teams as they embark on their projects. This presentation will focus on the content and organization of the Start Up Session and how these lessons learned can contribute to the furthering of the goals of the RED program: to design “revolutionary new approaches to engineering education,” focusing on “organizational and cultural change within the departments, involving students, faculty, staff, and industry in rethinking what it means to provide an engineering program.” We see the Start Up Session as an important first step in the RED team establishing an identity as a team and learning how to work effectively together. We also encourage new RED teams to learn from the past, through a panel discussion with current RED team members who fill various roles on the teams: engineering education researcher, project manager, project PI, disciplinary faculty, social scientist, and others. By presenting our findings from the Start Up Session at ASEE, we believe we can contribute to the national conversation regarding change in engineering education as it is evidenced in the RED team’s work. 
    more » « less
  2. The need to expand computer science learning for all students has led to an increase in publicly and privately funded professional development (PD) opportunities for teachers. Our research team has been involved in the design of equity-focused PD opportunities for teachers in computing since 2012 by building partnerships with K-12 systems. The COVID-19 pandemic necessitated changes in our approach and a shift to a virtual PD institute. In this work, we describe our transition to a virtual PD institute, including the topics and design principles guiding the institute. We also examine how the virtual PD influenced teacher outcomes. Findings suggest an increase in teachers’ knowledge and self-efficacy while highlighting the affordances of virtual platforms most valued by teachers. 
    more » « less
  3. The Computer Science Frontiers (CSF) project introduces teachers to the topics of artificial intelligence and distributed computing to engage their female students in computing by connecting lessons to relevant cutting edge technologies. Application topics include social media and news articles, as well as climate change, the arts (movies, music, and museum collections), and public health/medicine. CSF educators are prepared in a pedagogy and peer-teaching centered professional development program where they simultaneously learn and teach distributed computing, artificial intelligence, and internet of things lessons to each other. These professional developments allow educators to hone in on their teaching skills of these new topics and gain confidence in their ability to teach new computer science materials before running several activities with their students in the academic year classroom. In this workshop, teachers participating in the CS Frontiers professional development will give testimonials discussing their experiences teaching these topics in a two week summer camp. Attendees will then try out three computing activities, one from each Computer Science Frontiers module. Finally, there will be a question and answer session. 
    more » « less
  4. Wessner, David R (Ed.)
    ABSTRACT Calls to increase undergraduate involvement in research have led to a significant increase in student participation via course-based undergraduate research experiences (CUREs). These CUREs provide students an authentic research experience, which often involves dissemination of research by public speaking. For instance, the First-year Research Immersion (FRI) program at Binghamton University is a three-semester CURE sequence that prepares students for scientific research and effective communication of their findings. After one semester of research, students from the FRI program are tasked with presenting their research to hundreds of faculty members, staff, friends, and family at the annual FRI poster session. However, our students, and undergraduates in general, report high anxiety and fear around public speaking such as this. To better prepare our students for public speaking at a research poster session, we developed a workshop that includes a novel role-play activity to mimic a fast-paced poster session or conference in order to address students' fears and increase confidence levels. The role-play activity gives students iterative practice such that they are prepared for the realities of a poster session including variation of poster attendees. During the activity, students switch roles between presenter and audience member. In the role of an audience member, students are given Pokèmon-like role-playing cards that explain the traits and abilities of various types of poster-goers that students might come across (faculty in and out of discipline, staff, family, friends, etc.). Students improvise and enact their card-assigned role as they engage with their classmates who are practicing their poster presentations. To assess student outcomes, students were given three surveys: pre-activity, post-activity, and post-poster presentation. Immediately following the activity, 64% of students reported the highest level of confidence, and following the poster session, 93% of students reported extreme confidence in their poster presentation abilities. These data show that this role-play activity can help address student confidence and better prepare students to communicate their research. 
    more » « less
  5. The United Nations Sustainable Development Goals (UN SDGs) are the focus for a Research Experience for Teachers (RET) Site in Engineering at X University. The relevant and meaningful contexts of the SDGs allow middle and high school teachers and their students to easily make connections between research in a university lab setting to Science, Technology, Engineering, and Math (STEM) concepts in their classroom. Lesson plans inspired by the UN SDGs research experience were developed as an “integrated STEM” problem solving activity by each of the RET teachers. Ten (10) teachers comprising of both pre-service and in-service middle or high school teachers have participated in each cohort over the two years of the NSF RET grant thus far. Six weeks of authentic summer research takes place in 5 different faculty labs at X University under the mentorship of faculty and their graduate students or postdoc. Examples of the research projects include “Photocatalysis for Clean Energy and Environment,” “Genetically Engineering Plasmid DNA molecules to address Tuberculosis Antibiotic Resistance,” and “New Water-Based Technology for Plastic Recycling.” RET participants also attend a weekly coffee session to help guide the teachers through the research process and a weekly ½-day professional development (PD) session to translate the research experience into a classroom lesson plan that aligns to state standards, as well as evidence-backed curriculum design and teaching strategies. Teacher cohort building and community is fostered through group lunches and additional activities (e.g., coordinated lab visits, behind the scenes tour of a local science museum, and industry panel). For evaluation of the RET program, pre/post-surveys measured the teacher’s self-reported ability, confidence, understanding, and frequency of use of the Engineering Design Process (EDP), Integrated STEM, and the UN Sustainable Development Goals. Formative assessment was conducted throughout the summer on various aspects of the RET through surveys and regular check-ins with the teachers. At the end of the summer, focus groups were conducted by an external evaluator for both the teacher participants and the research mentors. Both teachers and mentors declared the program was well planned and executed. The teachers developed close bonds and connections, learned a lot from each other, had meaningful research experiences, and developed a sense of community. The research mentors reported that the teachers provided useful research contributions, were enthusiastic about the research, had genuine lab experiences, developed professional skills, and built good community connections. Areas for improvement included clear expectations for everyone, reducing steep learning curves, and consistency of mentoring across the labs. The RET program continues into the academic year with occasional meetings to report on the implementation of their research-inspired lesson plan in their classroom. The RET participants share that they are bringing in the “real world” relevance to their students with an integrated STEM lens (e.g., climate change and UN SDGs) and that they refer back to their own lab experiences (e.g., importance of measuring chemicals accurately). The research experience has made several positive impacts on the teacher participants that also benefit their students. 
    more » « less