Abstract While SbCl3is typically inert toward oxidation byortho‐quinones, we useo‐chloranil to show that the outcome of such reactions may be altered by the presence of a donor such as triphenylphosphine oxide, which readily traps the SbCl3(catCl) synthon (catCl = tetrachlorocatecholate) in the form of the corresponding adduct Ph3PO→SbCl3(catCl). The same reaction in the presence of a chloride salt affords the corresponding antimonate anion [Cl4Sb(catCl)]−. Computational studies indicate that the putative SbCl3(catCl) synthon has a higher chloride ion affinity than SbCl5, suggesting significant Lewis acidity. This property is further demonstrated by the use of the SbCl3/o‐chloranil system for both THF polymerization and a Friedel–Crafts‐type alkylation of benzene using 1‐fluorooctane. Finally, the reaction ofE‐stilbene witho‐chloranil in the presence of SbCl3affords the corresponding benzodioxene, suggesting that SbCl3may also operate as a redox‐active catalyst. 
                        more » 
                        « less   
                    
                            
                            Energy Decomposition Analysis of Lewis Acid/Base Adducts and Frustrated Lewis Pairs: The Use of E Orb / E Steric Ratios as a Reaction Parameter
                        
                    - Award ID(s):
- 1664973
- PAR ID:
- 10291241
- Date Published:
- Journal Name:
- Inorganic Chemistry
- ISSN:
- 0020-1669
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Coordination complexes of general formulatrans‐[MX2(R2ECH2CH2ER2)2] (MII=Ti, V, Cr, Mn; E=N or P; R=alkyl or aryl) are a cornerstone of coordination and organometallic chemistry. We investigate the electronic properties of two such complexes,trans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2], which thus representtrans‐[MX2(R2ECH2CH2ER2)2] where M=V, X=Cl, R=Me and E=N (tmeda) and P (dmpe). These VIIcomplexes haveS=3/2 ground states, as expected for octahedral d3. Their tetragonal distortion leads to zero‐field splitting (zfs) that is modest in magnitude (D≈0.3 cm−1) relative to analogousS=1 TiIIand CrIIcomplexes. This parameter was determined from conventional EPR spectroscopy, but more effectively from high‐frequency and ‐field EPR (HFEPR) that determined the sign ofDas negative for the diamine complex, but positive for the diphosphine, which information had not been known for anytrans‐[VX2(R2ECH2CH2ER2)2] systems. The ligand‐field parameters oftrans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2] are obtained using both classical theory andab initioquantum chemical theory. The results shed light not only on the electronic structure of VIIin this environment, but also on differences between N and P donor ligands, a key comparison in coordination chemistry.more » « less
- 
            Abstract The physics of recombination lines in the Heisinglet system is expected to be relatively simple, supported by accurate atomic models. We examine the intensities of Heisingletsλ3614, λ3965, λ5016, λ6678, and λ7281 and the triplet Heiλ5876 in various types of ionized nebulae and compare them with theoretical predictions to test the validity of the “Case B” recombination scenario and the assumption of thermal homogeneity. Our analysis includes 85 spectra from Galactic and extragalactic Hiiregions, 90 from star-forming galaxies, and 218 from planetary nebulae, all compiled by the Deep Spectra of Ionized Regions Database Extended (DESIRED-E) project. By evaluating the ratios Heiλ7281/λ6678 and Heiλ7281/λ5876, we determineTe(Hei) and compare it with direct measurements ofTe([Oiii]λ4363/λ5007). We find thatTe(Hei) is systematically lower thanTe([Oiii]) across most objects and nebula types. Additionally, we identify a correlation between the abundance discrepancy factor (ADF(O2+)) and the differenceTe([Oiii]) –Te(Hei) for planetary nebulae. We explore two potential explanations: photon loss fromn1P → 11Stransitions and temperature inhomogeneities. Deviations from “Case B” may indicate photon absorption by Hirather than Heiand/or generalized ionizing photon escape, highlighting the need for detailed consideration of radiative transfer effects. If temperature inhomogeneities are widespread, identifying a common physical phenomenon affecting all ionized nebulae is crucial. Our results suggest that both scenarios can contribute to the observed discrepancies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    