skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lewis Acidity of the SbCl 3 / o ‐chloranil System
Abstract While SbCl3is typically inert toward oxidation byortho‐quinones, we useo‐chloranil to show that the outcome of such reactions may be altered by the presence of a donor such as triphenylphosphine oxide, which readily traps the SbCl3(catCl) synthon (catCl = tetrachlorocatecholate) in the form of the corresponding adduct Ph3PO→SbCl3(catCl). The same reaction in the presence of a chloride salt affords the corresponding antimonate anion [Cl4Sb(catCl)]. Computational studies indicate that the putative SbCl3(catCl) synthon has a higher chloride ion affinity than SbCl5, suggesting significant Lewis acidity. This property is further demonstrated by the use of the SbCl3/o‐chloranil system for both THF polymerization and a Friedel–Crafts‐type alkylation of benzene using 1‐fluorooctane. Finally, the reaction ofE‐stilbene witho‐chloranil in the presence of SbCl3affords the corresponding benzodioxene, suggesting that SbCl3may also operate as a redox‐active catalyst.  more » « less
Award ID(s):
2316689
PAR ID:
10592010
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
64
Issue:
29
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Reactions oftrans‐(C6F5)(p‐tol3P)2Pt(C≡C)nSiEt3(PtC2nSi;n=5, 7, 9) and excessPtClin the presence of wetn‐Bu4N+F(to effect protodesilylation) under Sonogashira‐type conditions (CuCl, base, other additives) afford the title compoundsPtC10Pt,PtC14Pt, andPtC18Ptin 42–32 % yields. A four‐fold substitution of the phosphine ligands inPtC10Ptby PEt3affordsPt'C10Pt’(78 %), and a Sonogashira reaction ofPt'C2HandPt'ClaffordsPt'C2Pt’(68 %). The analogous reaction withPtC2SiandPtClis unsuccessful, presumably for steric reasons. The crystal structures ofPtC10Pt,PtC14Pt,Pt'C10Pt′, andPt'C2Pt’exhibit a number of interesting trends and features. Certain sp chain extension reactions that lead to or employ the precursorsPtC10Si,PtC12Si,PtC14Si, andPtC18Sisometimes give byproducts derived from C2loss, and possible origins are discussed. Related phenomena have been reported by others in the course of synthesizing extended conjugated polyynes. 
    more » « less
  2. Abstract A novel transition metal chalcohalide [Cr7S8(en)8Cl2]Cl3 ⋅ 2H2O, with [Cr7S8]5+dicubane cationic clusters, has been synthesized by a low temperature solvothermal method, using dimethyl sulfoxide (DMSO) and ethylenediamine (en) solvents. Ethylenediamine ligand exhibits bi‐ and monodentate coordination modes; in the latter case ethylenediamine coordinates to Cr atoms of adjacent clusters, giving rise to a 2D polymeric structure. Although magnetic susceptibility shows no magnetic ordering down to 1.8 K, a highly negative Weiss constant,θ=−224(2) K, obtained from Curie‐Weiss fit of inverse susceptibility, suggests strong antiferromagnetic (AFM) interactions betweenS=3/2 Cr(III) centers. Due to the complexity of the system with (2S+1)7=16384 microstates from seven Cr3+centers, a simplified model with only two exchange constants was used for simulations. Density‐functional theory (DFT) calculations yielded the two exchange constants to beJ1=−21.4 cm−1andJ2=−30.2 cm−1, confirming competing AFM coupling between the shared Cr3+center and the peripheral Cr3+ions of the dicubane cluster. The best simulation of the experimental data was obtained withJ1=−20.0 cm−1andJ2=−21.0 cm−1, in agreement with the slightly stronger AFM exchange within the triangles of the peripheral Cr3+ions as compared to the AFM exchange between the central and peripheral Cr3+ions. This compound is proposed as a synthon towards magnetically frustrated systems assembled by linking dicubane transition metal‐chalcogenide clusters into polymeric networks. 
    more » « less
  3. Abstract Reduction of the cobalt(II) chloride complex, Ph2B(tBuIm)2Co(THF)Cl (1) in the presence oftBuN≡C affords the diamagnetic, square planar cobalt(I) complex Ph2B(tBuIm)2Co(C≡NtBu)2(2). This is a rare example of a 16‐electron cobalt(I) complex that is structurally related to square planar noble metal complexes. Accordingly, the electronic structure of2, as calculated by DFT, reveals that the HOMO is largely dz2in character. Complex2is readily oxidized to its cobalt(II) congener [Ph2B(tBuIm)2Co(C=NtBu)2]BPh4(3‐BPh4), whose EPR spectral parameters are characteristic of low‐spin d7with an unpaired electron in an orbital of dz2parentage. This is also consistent with the results of DFT calculations. Despite its 16‐electron configuration and the dz2parentage of the HOMO, the only tractable reactions of2involve one electron oxidation to afford3. 
    more » « less
  4. The firstin situRaman spectroscopic measurements of Dy speciation in hydrothermal fluids to 300 °C indicate that the Dy3+aqua ion (v1,Dy–O) is stable in acidic DyCl3solutions up to 200 °C above which Dy chloride complexes (vDy–Cl) predominate. 
    more » « less
  5. Abstract As part of our efforts to interface late transition metals with Lewis acidic main group fragments, we have decided to investigate gold complexes bearing halogermanes as Z‐type ligands. Toward this end, we have synthesized complexes of general formula [(o‐(Ph2P)C6H4)2(Ph)(X)GeAuCl] (X = F, Cl). Experimental and computational analyses indicate the presence of an Au→Ge interaction in both cases. Chloride abstraction reactions have also been investigated. In the case of X = Cl, double chloride abstraction with AgSbF6affords a putative dication that gradually abstracts fluoride from its counterion. This putative dication is also significantly more active as a catalyst than its monocationic analog in alkyne hydroamination reactions. 
    more » « less