skip to main content


Title: Enormous explosion energy of Type IIP SN 2017gmr with bipolar 56Ni ejecta
ABSTRACT The unusual Type IIP SN 2017gmr is revisited in order to pinpoint the origin of its anomalous features, including the peculiar light curve after about 100 d. The hydrodynamic modelling suggests the enormous explosion energy of ≈1052 erg. We find that the light curve with the prolonged plateau/tail transition can be reproduced either in the model with a high hydrogen abundance in the inner ejecta and a large amount of radioactive 56Ni, or in the model with an additional central energy source associated with the fallback/magnetar interaction in the propeller regime. The asymmetry of the late H α emission and the reported linear polarization are reproduced by the model of the bipolar 56Ni ejecta. The similar bipolar structure of the oxygen distribution is responsible for the two-horn structure of the [O i] 6360, 6364 Å emission. The bipolar 56Ni structure along with the high explosion energy are indicative of the magneto-rotational explosion. We identify narrow high-velocity absorption features in H α and He i10 830 Å lines with their origin in the fragmented cold dense shell formed due to the outer ejecta deceleration in a confined circumstellar shell.  more » « less
Award ID(s):
1911151 1911225
NSF-PAR ID:
10291333
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
505
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
116 to 125
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Our recent work demonstrates a correlation between the high-velocity blue edge, vedge, of the ironpeak Fe/Co/Ni H-band emission feature and the optical light curve shape of normal, transitional and sub-luminous type Ia Supernovae (SNe Ia). We explain this correlation in terms of SN Ia physics. vedge corresponds to the sharp transition between the complete and incomplete silicon burning regions in the ejecta. It measures the point in velocity space where the outer 56Ni mass fraction, XNi, falls to the order of 0.03-0.10. For a given 56Ni mass, M(56Ni), vedge is sensitive to the speci c kinetic energy Ekin(M(56Ni)=MWD) of the corresponding region. Combining vedge with light curve parameters (i.e., sBV , m15;s in B and V ) allows us to distinguish between explosion scenarios. The correlation between vedge and light-curve shape is consistent with explosion models near the Chandrasekhar limit. However, the available sub-MCh WD explosion model based on SN 1999by exhibits velocities which are too large to explain the observations. Finally, the sub-luminous SN 2015bo exhibits signatures of a dynamical merger of two WDs demonstrating diversity among explosion scenarios at the faint end of the SNe Ia population. 
    more » « less
  2. null (Ed.)
    ABSTRACT Stripped-envelope supernovae (SE-SNe) show a wide variety of photometric and spectroscopic properties. This is due to the different potential formation channels and the stripping mechanism that allows for a large diversity within the progenitors outer envelope compositions. Here, the photometric and spectroscopic observations of SN 2020cpg covering ∼130 d from the explosion date are presented. SN 2020cpg (z = 0.037) is a bright SE-SNe with the B-band peaking at MB = −17.75 ± 0.39 mag and a maximum pseudo-bolometric luminosity of Lmax = 6.03 ± 0.01 × 1042 erg s−1. Spectroscopically, SN 2020cpg displays a weak high- and low-velocity H α feature during the photospheric phase of its evolution, suggesting that it contained a detached hydrogen envelope prior to explosion. From comparisons with spectral models, the mass of hydrogen within the outer envelope was constrained to be ∼0.1 M⊙. From the pseudo-bolometric light curve of SN 2020cpg a 56Ni mass of MNi ∼ 0.27 ± 0.08 M⊙ was determined using an Arnett-like model. The ejecta mass and kinetic energy of SN 2020cpg were determined using an alternative method that compares the light curve of SN 2020cpg and several modelled SE-SNe, resulting in an ejecta mass of Mejc ∼ 5.5 ± 2.0 M⊙ and a kinetic energy of EK ∼ 9.0 ± 3.0 × 1051 erg. The ejected mass indicates a progenitor mass of 18−25 M⊙. The use of the comparative light curve method provides an alternative process to the commonly used Arnett-like model to determine the physical properties of SE-SNe. 
    more » « less
  3. ABSTRACT

    We present photometry and spectroscopy of the slowly evolving superluminous Type IIn supernova (SN) 2015da. SN 2015da is extraordinary for its very high peak luminosity, and also for sustaining a high luminosity for several years. Even at 8 yr after explosion, SN 2015da remains as luminous as the peak of a normal SN II-P. The total radiated energy integrated over this time period (with no bolometric correction) is at least $1.6 \times 10^{51}$ erg (or 1.6 FOE). Including a mild bolometric correction, adding kinetic energy of the expanding cold dense shell of swept-up circumstellar material (CSM), and accounting for asymmetry, the total explosion kinetic energy was likely 5–10 FOE. Powering the light curve with CSM interaction requires an energetic explosion and 20 M$_{\odot }$ of H-rich CSM, which in turn implies a massive progenitor system $\gt $30 M$_{\odot }$. Narrow P Cyg features show steady CSM expansion at 90 km s$^{-1}$, requiring a high average mass-loss rate of $\sim$0.1 M$_{\odot }$ yr$^{-1}$ sustained for two centuries before explosion (although ramping up toward explosion time). No current theoretical model for single-star pre-SN mass-loss can account for this. The slow CSM, combined with broad wings of H $\alpha$ indicating H-rich material in the unshocked ejecta, disfavours a pulsational pair instability model for the pre-SN mass-loss. Instead, violent pre-SN binary interaction is a likely culprit. Finally, SN 2015da exhibits the characteristic asymmetric blueshift in its emission lines from shortly after peak until the present epoch, adding another well-studied superluminous SNe IIn with unambiguous evidence of post-shock dust formation.

     
    more » « less
  4. ABSTRACT We present the photometry and spectroscopy of SN 2015an, a type II Supernova (SN) in IC 2367. The recombination phase of the SN lasts up to 120 d, with a decline rate of 1.24 mag/100d, higher than the typical SNe IIP. The SN exhibits bluer colours than most SNe II, indicating higher ejecta temperatures. The absolute V-band magnitude of SN 2015an at 50 d is −16.83 ± 0.04 mag, pretty typical for SNe II. However, the 56Ni mass yield, estimated from the tail V-band light curve to be 0.021 ± 0.010 M⊙, is comparatively low. The spectral properties of SN 2015an are atypical, with low H α expansion velocity and presence of high-velocity component of H α at early phases. Moreover, the continuum exhibits excess blue flux up to 50 d, which is interpreted as a progenitor metallicity effect. The high-velocity feature indicates ejecta-circumstellar material interaction at early phases. The semi-analytical modelling of the bolometric light curve yields a total ejected mass of 12 M⊙, a pre-SN radius of 388 R⊙ and explosion energy of 1.8 foe. 
    more » « less
  5. ABSTRACT

    The abundance distribution in the ejecta of the peculiar slowly declining Type Ia supernova (SN Ia) SN 1999aa is obtained by modelling a time series of optical spectra. Similar to SN 1991T, SN 1999aa was characterized by early-time spectra dominated by Fe iii features and a weak Si ii 6355 Å line, but it exhibited a high-velocity Ca ii H&K line and morphed into a spectroscopically normal SN Ia earlier. Three explosion models are investigated, yielding comparable fits. The innermost layers are dominated by ∼0.3 M⊙ of neutron-rich stable iron-group elements, mostly stable iron. Above that central region lies a 56Ni-dominated shell, extending to $v \approx 11\, 000$–$12\, 000$ km s−1, with mass ∼0.65 M⊙. These inner layers are therefore similar to those of normal SNe Ia. However, the outer layers exhibit composition peculiarities similar to those of SN 1991T: The intermediate-mass elements shell is very thin, containing only ∼0.2 M⊙, and is sharply separated from an outer oxygen-dominated shell, which includes ∼0.22 M⊙. These results imply that burning suddenly stopped in SN 1999aa. This is a feature SN 1999aa shares with SN 1991T, and explains the peculiarities of both SNe, which are quite similar in nature apart from the different luminosities. The spectroscopic path from normal to SN 1991T-like SNe Ia cannot be explained solely by a temperature sequence. It also involves composition layering differences, suggesting variations in the progenitor density structure or in the explosion parameters.

     
    more » « less