skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Title: Using Informed Design in Informal Computer Science Programs to Increase Youths’ Interest, Self-efficacy, and Perceptions of Parental Support
Our work is situated in research on Computer Science (CS) learning in informal learning environments and literature on the factors that influence girls to enter CS. In this article, we outline design choices around the creation of a summer programming camp for middle school youth. In addition, we describe a near-peer mentoring model we used that was influenced by Bandura's self-efficacy theory. The purpose of this article, apart from promoting transparency of program design, was to evaluate the effectiveness of our camp design in terms of increasing youths’ interest, self-efficacy beliefs, and perceptions of parental support. We found significant gains for all three of these concepts. Additionally, we make connections between our design choices (e.g., videos, peer support, mentor support) and the affective gains by thematically analyzing interview data concerning the outcomes found in our camps.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Computing Education
Page Range / eLocation ID:
1 to 24
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In response to the need to broaden participation in computer science, we designed a summer camp to teach middle-school-aged youth to code apps with MIT App Inventor. For the past four summers, we have observed significant gains in youth's interest and self-efficacy in computer science, after attending our camps. The majority of these youth, however, were youth from our local community. To provide equal access across the state and secure more diversity, we were interested in examining the effect of the camp on a broader population of youth. Thus, we partnered with an outreach program to reach and test our camps on youth from low-income high-poverty areas in the Intermountain West. During the summer of 2019, we conducted two sets of camps: locally advertised app camps that attracted youth from our local community and a second set of camps as part of a larger outreach program for youth from low-income high-poverty areas. The camps for both populations followed the same design of personnel, camp activities, structure, and curriculum. However, the background of the participants was slightly different. Using survey data, we found that the local sample experienced significant gains in both self-efficacy and interest, while the outreach group only reported significant gains in self-efficacy after attending the camp. However, the qualitative data collected from the outreach participants indicated that they had a positive experience both with the camp and their mentors. In this article, we discuss the camp design and findings in relation to strategies for broadening participation in Computer Science education. 
    more » « less
  2. null (Ed.)
    In 2020, over 116,000 students took the Advanced Placement Computer Science Principles (AP CSP) Exam. Although Black female students have participated in AP CSP at higher rates than for the AP CSA course, their representation is still disproportionately lower than the school population of Black females. In this Experience Report, we present the early results of an NSF-sponsored effort that provides an AP CSP preparatory experience and CS career awareness to Black female students from rural, urban, and suburban communities in the state of Alabama. At the project’s core is a peer-learning community (PLC) facilitated by Black female teachers with deep knowledge of AP CSP. An intensive summer experience prepares students for the AP CSP course through culturally-responsive, project-based learning experiences designed to connect advanced computing concepts to the students’ personal lives and career aspirations. Interactions and support continue throughout the academic year to facilitate AP exam readiness. Online interactions among the PLC members serve to mitigate the barriers that young women of color typically encounter when pursuing CS education, increasing their persistence and success in CS. We examined whether students’ project participation enhances self-efficacy and perceived competency in CS, increases positive attitudes, awareness, and desire to pursue CS studies and careers, and mitigates perceived socio-cultural barriers to pursue studies and careers in CS. Our initial findings include AP CSP examination qualifying rates (87.5%) that exceed the 2019 national/statewide rates for all subgroups (including Alabama White male students), increased perceptions of Black females as belonging in CS, and gains in computing self-efficacy throughout the academic year. 
    more » « less
  3. It is critical to focus on diversity and increasing participation of underrepresented groups in computing. To address this need, we must better understand minorities' access to role models and mentors, especially at a young age, as research and practice shows that these relationships can affect students' self-efficacy and motivation in the educational fields and careers they choose to pursue. We provided a 9-Saturday programming camp to middle school students in Newark, New Jersey with near-peer mentors (first year, college student instructors) to learn more about the younger students' initial access to role-models and mentors, and how an intervention might change this. Our camp served a total of 28 minority students (17 males and 11 females; grades 5-7) from a low-income, urban area. We found that when asked at the beginning of the camp, our middle students largely reported that they did not have any role-models or mentors in computing. However, at the conclusion of the camp, these same students indicated that they developed strong connections with their near-peer mentors and even saw them as role-models. These findings highlight the need for more mentorship opportunities for students of all ages, and the importance of providing resources and support to help develop and nurture these connections. 
    more » « less
  4. Abstract Background

    Engineering‐oriented bridge programs and camps are popular strategies for broadening participation. The students who often serve as counselors and mentors in these programs are integral to their success.


    Predicated on the belief that mentoring contributes to positive outcomes for the mentors themselves, we sought to understand how undergraduate student mentors approached and experienced their work with a 6‐day overnight, NSF‐sponsored youth engineering camp (YEC). This study was guided by the question: How did YEC camp counselors approach and experience their roles as mentors?


    We conducted an exploratory qualitative study of four Black undergraduate engineering students' experiences with and approaches to near‐peer mentorship in the YEC program. Data consisted of transcripts from two post‐program interviews and one written reflection from each participant. We analyzed data through abductive coding and the funds of knowledge framework.


    Through subsequent interpretation of code categories, we found YEC mentors: (1) engaged in altruistic motivations as YEC mentors, (2) leveraged previous experiences to guide their approaches to mentorship, and (3) engaged in self‐directed learning and development.


    This study highlights the knowledge and strategies that YEC mentors drew upon in their roles, and how they sought and achieved various personal, academic, and professional benefits. Insights from this study illustrate how near‐peer mentors can support their and others' engineering aspirations.

    more » « less
  5. Background: There has been a dearth of research on intersectional identities in STEM, including the fields of computing and engineering. In computing education research, much work has been done on broadening participation, but there has been little investigation into how the field of computer science (CS) presents opportunities for students with strong intersectional identities. This study explores the strengths and connections among the unique identities and the symbiotic relationships that elementary Latina students hold in CS identity attainment. Purpose: The aim of this article is to better understand how predominantly low-income, multilingual Latina students experience identity development through the lens of diverse group membership. We examine how young Latinas, through their participation in a yearlong culturally and linguistically responsive CS curriculum, leverage their intersecting identities to rewrite the formula of what a computer scientist is and can be, leaving space to include and invite other strong identities as well. Research Design: An explanatory sequential mixed-methods design was used that analyzed data from predominantly low-income, multilingual Latinas in upper elementary grades, including pre- and post-CS identity surveys (N = 50) delivered before and after implementation of the curriculum, and eight individual semi-structured student interviews. Findings: We found that Latina students developed significantly stronger identification with the field of CS from the beginning to the end of the school year with regard to their experiences with CS, perception of themselves as computer scientists, family support for CS and school, and friend support for CS and school. Interviews revealed that perception of their CS ability greatly influenced identification with CS and that girls’ self-perceptions stemmed from their school, cultural, and home learning environments. Conclusion: Our results highlight the wealth of resources that Latinas bring to the classroom through their home- and community-based assets, which are characterized by intersecting group membership. Students did not report on the intersection between language and CS identity development, which warrants further investigation. 
    more » « less