skip to main content


Title: Optimal l1 Rank One Matrix Decomposition
In this paper, we consider the decomposition of positive semidefinite matrices as a sum of rank one matrices. We introduce and investigate the properties of various measures of optimality of such decompositions. For some classes of positive semidefinite matrices, we give explicitly these optimal decompositions. These classes include diagonally dominant matrices and certain of their generalizations, 2 × 2, and a class of 3 × 3 matrices.  more » « less
Award ID(s):
1816608
NSF-PAR ID:
10291404
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Springer optimization and its applications
ISSN:
1931-6836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study algorithms for approximating pairwise similarity matrices that arise in natural language processing. Generally, computing a similarity matrix for $n$ data points requires $\Omega(n^2)$ similarity computations. This quadratic scaling is a significant bottleneck, especially when similarities are computed via expensive functions, e.g., via transformer models. Approximation methods reduce this quadratic complexity, often by using a small subset of exactly computed similarities to approximate the remainder of the complete pairwise similarity matrix. Significant work focuses on the efficient approximation of positive semidefinite (PSD) similarity matrices, which arise e.g., in kernel methods. However, much less is understood about indefinite (non-PSD) similarity matrices, which often arise in NLP. Motivated by the observation that many of these matrices are still somewhat close to PSD, we introduce a generalization of the popular \emph{Nystrom method} to the indefinite setting. Our algorithm can be applied to any similarity matrix and runs in sublinear time in the size of the matrix, producing a rank-$s$ approximation with just $O(ns)$ similarity computations. We show that our method, along with a simple variant of CUR decomposition, performs very well in approximating a variety of similarity matrices arising in NLP tasks. We demonstrate high accuracy of the approximated similarity matrices in tasks of document classification, sentence similarity, and cross-document coreference. 
    more » « less
  2. Summary

    We propose two decompositions that help to summarize and describe high-dimensional tail dependence within the framework of regular variation. We use a transformation to define a vector space on the positive orthant and show that transformed-linear operations applied to regularly-varying random vectors preserve regular variation. We summarize tail dependence via a matrix of pairwise tail dependence metrics that is positive semidefinite; eigendecomposition allows one to interpret tail dependence in terms of the resulting eigenbasis. This matrix is completely positive, and one can easily construct regularly-varying random vectors that share the same pairwise tail dependencies. We illustrate our methods with Swiss rainfall and financial returns data.

     
    more » « less
  3. Abstract

    We present a generalization of the notion of neighborliness to non-polyhedral convex cones. Although a definition of neighborliness is available in the non-polyhedral case in the literature, it is fairly restrictive as it requires all the low-dimensional faces to be polyhedral. Our approach is more flexible and includes, for example, the cone of positive-semidefinite matrices as a special case (this cone is not neighborly in general). We term our generalization Terracini convexity due to its conceptual similarity with the conclusion of Terracini’s lemma from algebraic geometry. Polyhedral cones are Terracini convex if and only if they are neighborly. More broadly, we derive many families of non-polyhedral Terracini convex cones based on neighborly cones, linear images of cones of positive-semidefinite matrices, and derivative relaxations of Terracini convex hyperbolicity cones. As a demonstration of the utility of our framework in the non-polyhedral case, we give a characterization based on Terracini convexity of the tightness of semidefinite relaxations for certain inverse problems.

     
    more » « less
  4. We investigate the problem of finding tight inner approximations of large dimensional positive semidefinite (PSD) cones. To solve this problem, we develop a novel decomposition framework of the PSD cone by means of conical combinations of smaller dimensional sub-cones. We show that many inner approximation techniques could be summarized within this framework, including the set of (scaled) diagonally dominant matrices, Factor-width k matrices, and Chordal Sparse matrices. Furthermore, we provide a more flexible family of inner approximations of the PSD cone, where we aim to arrange the sub-cones so that they are maximally separated from each other. In doing so, these approximations tend to occupy large fractions of the volume of the PSD cone. The proposed approach is connected to a classical packing problem in Riemannian Geometry. Precisely, we show that the problem of finding maximally distant sub-cones in an ambient PSD cone is equivalent to the problem of packing sub-spaces in a Grassmannian Manifold. We further leverage the existing computational methods for constructing packings in Grassmannian manifolds to build tighter approximations of the PSD cone. Numerical experiments show how the proposed framework can balance accuracy and computational complexity, to efficiently solve positive-semidefinite programs. 
    more » « less
  5. Abstract

    We present a new variant of the Chambolle–Pock primal–dual algorithm with Bregman distances, analyze its convergence, and apply it to the centering problem in sparse semidefinite programming. The novelty in the method is a line search procedure for selecting suitable step sizes. The line search obviates the need for estimating the norm of the constraint matrix and the strong convexity constant of the Bregman kernel. As an application, we discuss the centering problem in large-scale semidefinite programming with sparse coefficient matrices. The logarithmic barrier function for the cone of positive semidefinite completable sparse matrices is used as the distance-generating kernel. For this distance, the complexity of evaluating the Bregman proximal operator is shown to be roughly proportional to the cost of a sparse Cholesky factorization. This is much cheaper than the standard proximal operator with Euclidean distances, which requires an eigenvalue decomposition.

     
    more » « less