The problem of minimizing the rank of a symmetric positive semidefinite matrix subject to constraints can be cast equivalently as a semidefinite program with complementarity constraints (SDCMPCC). The formulation requires two positive semidefinite matrices to be complementary. This is a continuous and nonconvex reformulation of the rank minimization problem. We investigate calmness of locally optimal solutions to the SDCMPCC formulation and hence show that any locally optimal solution is a KKT point. We develop a penalty formulation of the problem. We present calmness results for locally optimal solutions to the penalty formulation. We also develop a proximal alternating linearized minimization (PALM) scheme for the penalty formulation, and investigate the incorporation of a momentum term into the algorithm. Computational results are presented.
more »
« less
Optimal l1 Rank One Matrix Decomposition
In this paper, we consider the decomposition of positive semidefinite matrices as a sum of rank one matrices. We introduce and investigate the properties of various measures of optimality of such decompositions. For some classes of positive semidefinite matrices, we give explicitly these optimal decompositions. These classes include diagonally dominant matrices and certain of their generalizations, 2 × 2, and a class of 3 × 3 matrices.
more »
« less
- Award ID(s):
- 1816608
- PAR ID:
- 10291404
- Date Published:
- Journal Name:
- Springer optimization and its applications
- ISSN:
- 1931-6836
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the problem of finding tight inner approximations of large dimensional positive semidefinite (PSD) cones. To solve this problem, we develop a novel decomposition framework of the PSD cone by means of conical combinations of smaller dimensional sub-cones. We show that many inner approximation techniques could be summarized within this framework, including the set of (scaled) diagonally dominant matrices, Factor-width k matrices, and Chordal Sparse matrices. Furthermore, we provide a more flexible family of inner approximations of the PSD cone, where we aim to arrange the sub-cones so that they are maximally separated from each other. In doing so, these approximations tend to occupy large fractions of the volume of the PSD cone. The proposed approach is connected to a classical packing problem in Riemannian Geometry. Precisely, we show that the problem of finding maximally distant sub-cones in an ambient PSD cone is equivalent to the problem of packing sub-spaces in a Grassmannian Manifold. We further leverage the existing computational methods for constructing packings in Grassmannian manifolds to build tighter approximations of the PSD cone. Numerical experiments show how the proposed framework can balance accuracy and computational complexity, to efficiently solve positive-semidefinite programs.more » « less
-
We study algorithms for approximating pairwise similarity matrices that arise in natural language processing. Generally, computing a similarity matrix for $$n$$ data points requires $$\Omega(n^2)$$ similarity computations. This quadratic scaling is a significant bottleneck, especially when similarities are computed via expensive functions, e.g., via transformer models. Approximation methods reduce this quadratic complexity, often by using a small subset of exactly computed similarities to approximate the remainder of the complete pairwise similarity matrix. Significant work focuses on the efficient approximation of positive semidefinite (PSD) similarity matrices, which arise e.g., in kernel methods. However, much less is understood about indefinite (non-PSD) similarity matrices, which often arise in NLP. Motivated by the observation that many of these matrices are still somewhat close to PSD, we introduce a generalization of the popular \emph{Nystrom method} to the indefinite setting. Our algorithm can be applied to any similarity matrix and runs in sublinear time in the size of the matrix, producing a rank-$$s$$ approximation with just $O(ns)$ similarity computations. We show that our method, along with a simple variant of CUR decomposition, performs very well in approximating a variety of similarity matrices arising in NLP tasks. We demonstrate high accuracy of the approximated similarity matrices in tasks of document classification, sentence similarity, and cross-document coreference.more » « less
-
We show how randomized rounding based on Grothendieck’s identity can be used to prove a nearly tight bound on the covariance loss–the amount of covariance that is lost by taking conditional expectation. This result yields a new type of weak Szemeredi regularity lemma for positive semidefinite matrices and kernels. Moreover, it can be used to construct differentially private synthetic data.more » « less
-
null (Ed.)The traveling salesman problem (TSP) is a fundamental problem in combinatorial optimization. Several semidefinite programming relaxations have been proposed recently that exploit a variety of mathematical structures including, for example, algebraic connectivity, permutation matrices, and association schemes. The main results of this paper are twofold. First, de Klerk and Sotirov [de Klerk E, Sotirov R (2012) Improved semidefinite programming bounds for quadratic assignment problems with suitable symmetry. Math. Programming 133(1):75–91.] present a semidefinite program (SDP) based on permutation matrices and symmetry reduction; they show that it is incomparable to the subtour elimination linear program but generally dominates it on small instances. We provide a family of simplicial TSP instances that shows that the integrality gap of this SDP is unbounded. Second, we show that these simplicial TSP instances imply the unbounded integrality gap of every SDP relaxation of the TSP mentioned in the survey on SDP relaxations of the TSP in section 2 of Sotirov [Sotirov R (2012) SDP relaxations for some combinatorial optimization problems. Anjos MF, Lasserre JB, eds., Handbook on Semidefinite, Conic and Polynomial Optimization (Springer, New York), 795–819.]. In contrast, the subtour linear program performs perfectly on simplicial instances. The simplicial instances thus form a natural litmus test for future SDP relaxations of the TSP.more » « less
An official website of the United States government

