skip to main content

Title: Designing Ferromagnetic Soft Robots (FerroSoRo) with Level-Set-Based Multiphysics Topology Optimization
Soft active materials can generate flexible locomotion and change configurations through large deformations when subjected to an external environmental stimulus. They can be engineered to design 'soft machines' such as soft robots, compliant actuators, flexible electronics, or bionic medical devices. By embedding ferromagnetic particles into soft elastomer matrix, the ferromagnetic soft matter can generate flexible movement and shift morphology in response to the external magnetic field. By taking advantage of this physical property, soft active structures undergoing desired motions can be generated by tailoring the layouts of the ferromagnetic soft elastomers. Structural topology optimization has emerged as an attractive tool to achieve innovative structures by optimizing the material layout within a design domain, and it can be utilized to architect ferromagnetic soft active structures. In this paper, the level-set-based topology optimization method is employed to design ferromagnetic soft robots (FerroSoRo). The objective function comprises a sub-objective function for the kinematics requirement and a sub-objective function for minimum compliance. Shape sensitivity analysis is derived using the material time derivative and adjoint variable method. Three examples, including a gripper, an actuator, and a flytrap structure, are studied to demonstrate the effectiveness of the proposed framework.
Authors:
; ; ;
Award ID(s):
1762287
Publication Date:
NSF-PAR ID:
10291433
Journal Name:
IEEE International Conference on Robotics and Automation (ICRA)
Page Range or eLocation-ID:
10067 to 10074
Sponsoring Org:
National Science Foundation
More Like this
  1. Ferromagnetic soft materials can generate flexible mobility and changeable configurations under an external magnetic field. They are used in a wide variety of applications, such as soft robots, compliant actuators, flexible electronics, and bionic medical devices. The magnetic field enables fast and biologically safe remote control of the ferromagnetic soft material. The shape changes of ferromagnetic soft elastomers are driven by the ferromagnetic particles embedded in the matrix of a soft elastomer. The external magnetic field induces a magnetic torque on the magnetized soft material, causing it to deform. To achieve the desired motion, the soft active structure can be designed by tailoring the layouts of the ferromagnetic soft elastomers. This paper aims to optimize multi-material ferromagnetic actuators. Multi-material ferromagnetic flexible actuators are optimized for the desired kinematic performance using the reconciled level set method. This type of magnetically driven actuator can carry out more complex shape transformations by introducing ferromagnetic soft materials with more than one magnetization direction. Whereas many soft active actuators exist in the form of thin shells, the newly proposed extended level set method (X-LSM) is employed to perform conformal topology optimization of ferromagnetic soft actuators on the manifolds. The objective function comprises two sub-objective functions,more »one for the kinematic requirement and the other for minimal compliance. Shape sensitivity analysis is derived using the material time derivative and the adjoint variable method. Three examples are provided to demonstrate the effectiveness of the proposed framework.« less
  2. Soft robots employ flexible and compliant materials to perform adaptive tasks and navigate uncertain environments. However, soft robots are often unable to achieve forces and precision on the order of rigid-bodied robots. In this paper, we propose a new class of mobile soft robots that can reversibly transition between compliant and stiff states without reconfiguration. The robot can passively conform or actively control its shape, stiffen in its current configuration to function as a rigid-bodied robot, then return to its flexible form. The robotic structure consists of passive granular material surrounded by an active membrane. The membrane is composed of interconnected robotic sub-units that can control the packing density of the granular material and exploit jamming behaviors by varying the length of the interconnecting cables. Each robotic sub-unit uses a differential drive system to achieve locomotion and self-reconfigurability. We present the robot design and perform a set of locomotion and object manipulation experiments to characterize the robot's performance in soft and rigid states. We also introduce a simulation framework in which we model the jamming soft robot design and study the scalability of this class of robots. The proposed concept demonstrates the properties of both soft and rigid robots, andmore »has the potential to bridge the gap between the two« less
  3. Mechanical cloaks are materials engineered to manipulate the elastic response around objects to make them indistinguishable from their homogeneous surroundings. Typically, methods based on material-parameter transformations are used to design optical, thermal, and electric cloaks. However, they are not applicable in designing mechanical cloaks, since continuum-mechanics equations are not form invariant under general coordinate transformations. As a result, existing design methods for mechanical cloaks have so far been limited to a narrow selection of voids with simple shapes. To address this challenge, we present a systematic, data-driven design approach to create mechanical cloaks composed of aperiodic metamaterials using a large precomputed unit cell database. Our method is flexible to allow the design of cloaks with various boundary conditions, multiple loadings, different shapes and numbers of voids, and different homogeneous surroundings. It enables a concurrent optimization of both topology and properties distribution of the cloak. Compared to conventional fixed-shape solutions, this results in an overall better cloaking performance and offers unparalleled versatility. Experimental measurements on additively manufactured structures further confirm the validity of the proposed approach. Our research illustrates the benefits of data-driven approaches in quickly responding to new design scenarios and resolving the computational challenge associated with multiscale designs ofmore »functional structures. It could be generalized to accommodate other applications that require heterogeneous property distribution, such as soft robots and implants design.« less
  4. Abstract

    This work harnesses interpretable machine learning methods to address the challenging inverse design problem of origami-inspired systems. We established a work flow based on decision tree-random forest method to fit origami databases, containing both design features and functional performance, and to generate human-understandable decision rules for the inverse design of functional origami. First, the tree method is unique because it can handle complex interactions between categorical features and continuous features, allowing it to compare different origami patterns for a design. Second, this interpretable method can tackle multi-objective problems for designing functional origami with multiple and multi-physical performance targets. Finally, the method can extend existing shape-fitting algorithms for origami to consider non-geometrical performance. The proposed framework enables holistic inverse design of origami, considering both shape and function, to build novel reconfigurable structures for various applications such as metamaterials, deployable structures, soft robots, biomedical devices, and many more.

  5. Magnetoelastic thin shells exhibit great potential in realizing versatile functionalities through a broad range of combination of material stiffness, remnant magnetization intensity, and external magnetic stimuli. In this paper, we propose a novel computational method for forward simulation and inverse design of magnetoelastic thin shells. Our system consists of two key components of forward simulation and backward optimization. On the simulation side, we have developed a new continuum mechanics model based on the Kirchhoff-Love thin-shell model to characterize the behaviors of a megnetolelastic thin shell under external magnetic stimuli. Based on this model, we proposed an implicit numerical simulator facilitated by the magnetic energy Hessian to treat the elastic and magnetic stresses within a unified framework, which is versatile to incorporation with other thin shell models. On the optimization side, we have devised a new differentiable simulation framework equipped with an efficient adjoint formula to accommodate various PDE-constraint, inverse design problems of magnetoelastic thin-shell structures, in both static and dynamic settings. It also encompasses applications of magnetoelastic soft robots, functional Origami, artworks, and meta-material designs. We demonstrate the efficacy of our framework by designing and simulating a broad array of magnetoelastic thin-shell objects that manifest complicated interactions between magnetic fields,more »materials, and control policies.« less