skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessment of soil and water characteristics and land cover changes along the Tigris River in Baghdad
and cover changes impact the soil and water quality which are critical for environmental and human health. The goal of this study is to evaluate whether the land cover change along the Tigris River, one of the largest rivers in the Middle East, is causing any heavy metal contamination. The objectives of this study were: (1) To analyze the metal concentrations in the water and soil samples along the Tigris River and (2) identify and map the land cover changes of the Baghdad district. A total of nine water and soil samples were collected from three different Tigris River (TR) sampling locations, namely Gherai´at (TR1), Bab Al Moatham Bridge (TR2), and Karada-Masbah (TR3). Surface soil and water samples were collected, and analyzed for various metal concentrations. Landsat satellite imagery from 1984 and 2018 were analyzed and compared for land cover changes. Our water sample analysis revealed that As, Cd, Cr, Cu, Pb and Zn remained low and are within the permissible limit of WHO standards. Soil samples showed that Cu, and Pb concentrations in TR1 and TR2, respectively were higher compared to other locations. The metal concentrations in both water and soil samples at the sampled locations were at safe levels. Remote sensing analysis revealed that the water surface in the study area increased by about 5.3% while the vegetative surface decreased by 10.3% during the period of 1984 to 2018. Water and vegetative cover increased further in the south of Baghdad, along the Tigris River, compared to the north. The impact of land cover changes and increase in soil metal concentrations are higher on TR2 and TR3 locations. Environmental chemical analysis coupled with geospatial data helps to monitor the impact of land cover changes on water and soil quality by identifying areas vulnerable to change.  more » « less
Award ID(s):
1831977 1829184
PAR ID:
10291463
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Journal of Water Resources and Environmental Engineering
Volume:
13
Issue:
1
ISSN:
2141-6613
Page Range / eLocation ID:
57-63
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Heavy metals are prevalent in urban settings due to many legacy and modern pollution sources, and are essential to quantify because of the adverse health effects associated with them. Of particular importance is lead (Pb), because there is no safe level of exposure, and it especially harms children. Through our partnership with community scientists in the Marion County (Indiana, United States) area (n= 162 households), we measured Pb and other heavy metal concentrations in soil, paint, and dust. Community scientists completed sampling with screening kits and samples were analyzed in the laboratory via x-ray fluorescence by researchers to quantify heavy metal concentrations, with Pb hazards reported back to participants. Results point to renters being significantly (p≤ 0.05) more likely to contain higher concentrations of Pb, zinc (Zn), and copper (Cu) in their soil versus homeowners, irrespective of soil sampling location at the home. Housing age was significantly negatively correlated with Pb and Zn in soil and Pb in dust across all homes. Analysis of paired soil, dust, and paint samples revealed several important relationships such as significant positive correlations between indoor vacuum dust Pb, dust wipe Pb, and outdoor soil Pb. Our collective results point to rental status being an important determinant of metal pollution exposure in Indianapolis, with housing age being reflective of both past and present Zn and Pb pollution at the household scale in dust and soil. Thus, future environmental pollution work examining renters versus homeowners, as well as other household data such as home condition and resident race/ethnicity, is imperative for better understanding environmental disparities surrounding not just Pb, but other heavy metals in environmental media as well. 
    more » « less
  2. Abstract Chemical weathering in mountain critical zones controls river chemistry and regulates long‐term climate. Mountain landscapes contain diverse landforms created by geomorphic processes, including landslides, glacial moraines, and rock glaciers. These landforms generate unique flowpaths and water‐rock interactions that modify water chemistry as precipitation is transformed to streamflow. Variations in lithology and vegetation also strongly control water chemistry. Prior work has shown that landslides generate increased dissolved solute concentrations in rapidly uplifting mountains. However, there is still uncertainty regarding the magnitude which different geomorphic processes and land cover variations influence solute chemistry across tectonic and climatic regimes. We measured ion concentrations in surface water from areas that drain a variety of landforms and across land cover gradients in the East River watershed, a tributary of the Colorado River. Our results show that landslides produce higher solute concentrations than background values measured in streams draining soil‐mantled hillslopes and that elevated concentrations persist centuries to millennia after landslide occurrence. Channels with active bedrock incision also generate high solute concentrations, whereas solute concentrations in waters draining moraines and rock glaciers are comparable to background values. Solute fluxes from landslides and areas of bedrock incision are 1.6–1.8 times greater than nearby soil‐mantled hillslopes. Carbonic acid weathering dominates surface water samples from watersheds with greater vegetation coverage. Geomorphically enhanced weathering generates hotspots for net CO2release or sequestration, depending on lithology, that are 1.5–3.5 times greater than background values, which has implications for understanding links among surface processes, chemical weathering, and carbon cycle dynamics in alpine watersheds. 
    more » « less
  3. Indoor dust can be a major source of heavy metals, nutrients, and bacterial contamination in residential environments and may cause serious health problems. The goal of this research is to characterize chemical and bacterial contaminants of indoor, settled house dust in the Houston Metropolitan region. To achieve this, a total of 31 indoor dust samples were collected, along with household survey data, which were subsequently analyzed for elemental and bacterial concentrations. Microscopic and geospatial analysis was conducted to characterize and map potential hotspots of contamination. Interestingly Cd, Cr, Cu, Pb, and Zn concentrations of all 31 indoor dust samples were significantly enriched and exceeded soil background concentrations. Furthermore, As, Cd, Pb, and Zn concentrations in the dust samples were significantly correlated to the enteric bacterial load concentrations. Human health assessment revealed that cancer risk values via ingestion for Cd, Cr, and Ni were greater than the acceptable range. Of our 31 dust sample isolates, three Gram-negative and 16 Gram-positive pathogenic bacteria were identified, capable of causing a wide range of diseases. Our results demonstrate that both chemical and bacterial characterization of indoor dust coupled with spatial mapping is essential to assess and monitor human and ecological health risks. 
    more » « less
  4. The Upper Clark Fork River (UCFR) Long Term Research in Environmental Biology (LTREB) umbrella monitoring project generating these data is conducted separately and complementarily to the 200-million-dollar (USD) superfund project for ecological restoration of the UCFR, associated tributaries, and head water streams including Silver Bow and Warm Springs Creeks. Restoration along the UCFR in western Montana includes removal of metal-laden floodplain soils, lowering of the floodplain to its original elevation, and re-vegetation of over 70 km of the river’s floodplain closest to contaminant sources. The UCFR LTREB project includes bi-weekly water quality monitoring across the first 200 km of the river and its major tributaries along a gradient of heavy metal contamination associated with historic mining. Monitoring includes inorganic phosphorus and nitrogen concentrations, biotic standing stocks, and dissolved and whole-water heavy metal concentrations. The monitoring program began in 2017 with funding extended through 2028. The original analytical intent for these data was to assess the response of river dissolved organic carbon to the floodplain restoration. Data are primarily Aurora Total Organic Carbon combustion analyses of the concentration of organic carbon dissolved in filtered samples of well-mixed river thalweg water. A few samples from the final campaign in the dataset were analyzed with a Shimadzu instrument using a similar method. Data are from the 2022 water year (1 Oct 2021 to 30 Sep 2022) from samples collected on the Upper Clark Fork River (USGS HUC 17010201) at project sites distributed along the river from the vicinity of Anaconda to Missoula, Montana, USA. 
    more » « less
  5. We collected this data to better understand the timing of peak benthic cyanobacterial mat occurrence (specifically taxa associated with anatoxin production, Microcoleus and Anabaena) and mat anatoxin concentrations in rivers. We sampled in northern California on the South Fork Eel, Salmon, and Russian Rivers biweekly in 2022, and the Salmon River biweekly and South Fork Eel weekly in 2023. During each sampling event, we conducted benthic cover surveys, measured in-situ water quality parameters (temperature, pH, dissolved oxygen, conductivity), and collected surface water samples and targeted cyanobacteria samples. In 2022 on all rivers and in 2023 at the Salmon River, we also collected distributed non-targeted periphyton samples to characterize full-reach community compositions. All sampling was completed in 150-m reaches upstream of sensors recording continuous dissolved oxygen, conductivity, and temperature data. We analyzed surface water samples for nitrate, ammonium, soluble reactive phosphate, total dissolved carbon, and dissolved organic carbon. We also analyzed surface water samples from 2022 for major anions (Cl, SO4, Br) and cations (Na, K, Mg, Ca). Targeted-cyanobacteria and non-target periphyton samples were analyzed for anatoxins, relative abundance of algal taxa (via microscopy), ash-free dry mass, and chlorophyll-a. To estimate mean river depth within the dissolved oxygen footprint upstream of sensors, we kayaked portions of the river and collected river depth measurements. We also measured discharge at each river excluding the Salmon River (due to high discharge) and completed pebble counts at the South Fork Eel River to obtain sediment grain size distributions. 
    more » « less