skip to main content


Title: Using simulation to accelerate autonomous experimentation: A case study using mechanics
Award ID(s):
1661412 1813319
NSF-PAR ID:
10291471
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
iScience
Volume:
24
Issue:
4
ISSN:
2589-0042
Page Range / eLocation ID:
102262
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The onset of the COVID-19 pandemic changed the landscape of education and led to increased usage of remote proctoring tools that are designed to monitor students when they take assessments outside the classroom. While prior work has explored students' privacy and security concerns regarding online proctoring tools, the perspective of educators is under explored. Notably, educators are the decision makers in the classrooms and choose which remote proctoring services and the level of observations they deem appropriate. To explore how educators balance the security and privacy of their students with the requirements of remote exams, we sent survey requests to over 3,400 instructors at a large private university that taught online classes during the 2020/21 academic year. We had n=125 responses: 21% of the educators surveyed used online exam proctoring services during the remote learning period, and of those, 35% plan to continue using the tools even when there is a full return to in-person learning. Educators who use exam proctoring services are often comfortable with their monitoring capabilities. However, educators are concerned about students sharing certain types of information with exam proctoring companies, particularly when proctoring services collect identifiable information to validate students' identities. Our results suggest that many educators developed alternative assessments that did not require online proctoring and that those who did use online proctoring services often considered the tradeoffs between the potential risks to student privacy and the utility or necessity of exam proctoring services. 
    more » « less
  2. Abstract

    Objective.Our laboratory has proposed chemical stimulation of retinal neurons using exogenous glutamate as a biomimetic strategy for treating vision loss caused by photoreceptor (PR) degenerative diseases. Although our previousin-vitrostudies using pneumatic actuation indicate that chemical retinal stimulation is achievable, an actuation technology that is amenable to microfabrication, as needed for anin-vivoimplantable device, has yet to be realized. In this study, we sought to evaluate electroosmotic flow (EOF) as a mechanism for delivering small quantities of glutamate to the retina. EOF has great potential for miniaturization.Approach.An EOF device to dispense small quantities of glutamate was constructed and its ability to drive retinal output tested in anin-vitropreparation of PR degenerate rat retina.Main results.We built and tested an EOF microfluidic system, with 3D printed and off-the-shelf components, capable of injecting small volumes of glutamate in a pulsatile fashion when a low voltage control signal was applied. With this device, we produced excitatory and inhibitory spike rate responses in PR degenerate rat retinae. Glutamate evoked spike rate responses were also observed to be voltage-dependent and localized to the site of injection.Significance.The EOF device performed similarly to a previously tested conventional pneumatic microinjector as a means of chemically stimulating the retina while eliminating the moving plunger of the pneumatic microinjector that would be difficult to miniaturize and parallelize. Although not implantable, the prototype device presented here as a proof of concept indicates that a retinal prosthetic based on EOF-driven chemical stimulation is a viable and worthwhile goal. EOF should have similar advantages for controlled dispensing of charged neurochemicals at any neural interface.

     
    more » « less
  3. null (Ed.)
    3GPP air interface standards support meter-level position location of a user in a cellular network. With wider bandwidths and narrow antenna beamwidths available at mmWave frequencies, cellular networks now have the potential to provide sub-meter position location for each user. In this work, we provide an overview of 3GPP position location techniques that are designed for line-of-sight propagation. We discuss additional measurements required in the 3GPP standard that enable multipath-based non-line-of-sight position location. Further, we validate the concepts in this paper by using field data to test a map-based position location algorithm in an indoor office environment which has dimensions of 35 m by 65.5 m. We demonstrate how the fusion of angle of arrival and time of flight information in concert with a 3-D map of the office provides a mean accuracy of 5.72 cm at 28 GHz and 6.29 cm at 140 GHz, over 23 receiver distances ranging from 4.2 m to 32.3 m, using a single base station in line-of-sight and non-line-of-sight. We also conduct a theoretical analysis of the typical error experienced in the map-based position location algorithm and show that the complexity of the map-based algorithm is low enough to allow real-time implementation. 
    more » « less