Young learners today are constantly influenced by AI recommendations, from media choices to social connections. The resulting "filter bubble" can limit their exposure to diverse perspectives, which is especially problematic when they are not aware this manipulation is happening or why. To address the need to support youth AI literacy, we developed "BeeTrap", a mobile Augmented Reality (AR) learning game designed to enlighten young learners about the mechanisms and the ethical issue of recommendation systems. Transformative Experience model was integrated into learning activities design, focusing on making AI concepts relevant to students’ daily experiences, facilitating a new understanding of their digital world, and modeling real-life applications. Our pilot study with middle schoolers in a community-based program primarily investigated how transformative structured AI learning activities affected students’ understanding of recommendation systems and their overall conceptual, emotional, and behavioral changes toward AI.
more »
« less
“Adding Stuff From Other People”: How Peer Comparison Influences Conceptual Modeling in Precollege Engineering Contexts
Conceptual models serve as both as a design artifact and an object that communicates understanding about underlying systems. As such, conceptual modeling is considered as a crucial component of engineering design. Peer comparison and critique can help students develop conceptual models, yet little research explores how peer comparison activities can support conceptual model development in engineering settings. Therefore, we investigate why and how fifth-grade students made changes to their conceptual models after a peer comparison during a 4-week engineering design curriculum unit focused on water runoff at their school. Data sources included students’ conceptual models before and after the peer comparison, field notes, and student interviews after the peer comparison. To understand how students described their conceptual models and why any changes may have occurred, we interviewed twelve students and coded these interview transcripts at the utterance level. Results show that peer comparison activities can increase conceptual model quality. Further, peer comparison contributes to a diverse set of additional representations in students’ conceptual models. The study suggests peer comparisons of conceptual modeling may support students in realizing their peers are a great source of information, a critical realization to support positive engineering design experiences in K-12 and higher education.
more »
« less
- Award ID(s):
- 1742195
- PAR ID:
- 10291505
- Date Published:
- Journal Name:
- 2021 ASEE Virtual Annual Conference Content Access Proceedings
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Previous research has established that embodied modeling (role-playing agents in a system) can support learning about complexity. Separately, research has demonstrated that increasing the multimodal resources available to students can support sensemaking, particularly for students classified as English Learners. This study bridges these two bodies of research to consider how embodied models can strengthen an interconnected system of multimodal models created by a classroom. We explore how iteratively refining embodied modeling activities strengthened connections to other models, real-world phenomena, and multimodal representations. Through design-based research in a sixth grade classroom studying ecosystems, we refined embodied modeling activities initially conceived as supports for computational thinking and modeling. Across three iterative cycles, we illustrate how the conceptual and epistemic relationship between the computational and embodied model shifted, and we analyze how these shifts shaped opportunities for learning and participation by: (1) recognizing each student’s perspectives as critical for making sense of the model, (2) encouraging students to question and modify the “code” for the model, and (3) leveraging multimodal resources, including graphs, gestures, and student-generated language, for meaning-making. Through these shifts, the embodied model became a full-fledged component of the classroom’s model system and created more equitable opportunities for learning and participation.more » « less
-
null (Ed.)Engineering graduates need a deep understanding of key concepts in addition to technical skills to be successful in the workforce. However, traditional methods of instruction (e.g., lecture) do not foster deep conceptual understanding and make it challenging for students to learn the technical skills, (e.g., professional modeling software), that they need to know. This study builds on prior work to assess engineering students’ conceptual and procedural knowledge. The results provide an insight into how the use of authentic online learning modules influence engineering students’ conceptual knowledge and procedural skills. We designed online active learning modules to support and deepen undergraduate students’ understanding of key concepts in hydrology and water resources engineering (e.g., watershed delineation, rainfall-runoff processes, design storms), as well as their technical skills (e.g., obtaining and interpreting relevant information for a watershed, proficiency using HEC-HMS and HEC-RAS modeling tools). These modules integrated instructional content, real data, and modeling resources to support students’ solving of complex, authentic problems. The purpose of our study was to examine changes in students’ self-reported understanding of concepts and skills after completing these modules. The participants in this study were 32 undergraduate students at a southern U.S. university in a civil engineering senior design course who were assigned four of these active learning modules over the course of one semester to be completed outside of class time. Participants completed the Student Assessment of Learning Gains (SALG) survey immediately before starting the first module (time 1) and after completing the last module (time 2). The SALG is a modifiable survey meant to be specific to the learning tasks that are the focus of instruction. We created versions of the SALG for each module, which asked students to self-report their understanding of concepts and ability to implement skills that are the focus of each module. We calculated learning gains by examining differences in students’ self-reported understanding of concepts and skills from time 1 to time 2. Responses were analyzed using eight paired samples t-tests (two for each module used, concepts and skills). The analyses suggested that students reported gains in both conceptual knowledge and procedural skills. The data also indicated that the students’ self-reported gain in skills was greater than their gain in concepts. This study provides support for enhancing student learning in undergraduate hydrology and water resources engineering courses by connecting conceptual knowledge and procedural skills to complex, real-world problems.more » « less
-
null (Ed.)Engineering graduates need a deep understanding of key concepts in addition to technical skills to be successful in the workforce. However, traditional methods of instruction (e.g., lecture) do not foster deep conceptual understanding and make it challenging for students to learn the technical skills, (e.g., professional modeling software), that they need to know. This study builds on prior work to assess engineering students’ conceptual and procedural knowledge. The results provide an insight into how the use of authentic online learning modules influence engineering students’ conceptual knowledge and procedural skills. We designed online active learning modules to support and deepen undergraduate students’ understanding of key concepts in hydrology and water resources engineering (e.g., watershed delineation, rainfall-runoff processes, design storms), as well as their technical skills (e.g., obtaining and interpreting relevant information for a watershed, proficiency using HEC-HMS and HEC-RAS modeling tools). These modules integrated instructional content, real data, and modeling resources to support students’ solving of complex, authentic problems. The purpose of our study was to examine changes in students’ self-reported understanding of concepts and skills after completing these modules. The participants in this study were 32 undergraduate students at a southern U.S. university in a civil engineering senior design course who were assigned four of these active learning modules over the course of one semester to be completed outside of class time. Participants completed the Student Assessment of Learning Gains (SALG) survey immediately before starting the first module (time 1) and after completing the last module (time 2). The SALG is a modifiable survey meant to be specific to the learning tasks that are the focus of instruction. We created versions of the SALG for each module, which asked students to self-report their understanding of concepts and ability to implement skills that are the focus of each module. We calculated learning gains by examining differences in students’ self-reported understanding of concepts and skills from time 1 to time 2. Responses were analyzed using eight paired samples t-tests (two for each module used, concepts and skills). The analyses suggested that students reported gains in both conceptual knowledge and procedural skills. The data also indicated that the students’ self-reported gain in skills was greater than their gain in concepts. This study provides support for enhancing student learning in undergraduate hydrology and water resources engineering courses by connecting conceptual knowledge and procedural skills to complex, real-world problems.more » « less
-
Perusal of any common statics textbook will reveal a reference table of standard supports in the section introducing rigid body equilibrium analysis. Most statics students eventually memorize a heuristic approach to drawing a free-body diagram based on applying the information in this table. First, identify the entry in the table that matches the schematic representation of a connection. Then draw the corresponding force and/or couple moment vectors on the isolated body according to their positive sign conventions. Multiple studies have noted how even high performing students tend to rely on this heuristic rather than conceptual reasoning. Many students struggle when faced with a new engineering connection that does not match an entry in the supports table. In this paper, we describe an inquiry-based approach to introducing support models and free-body diagrams of rigid bodies. In a series of collaborative learning activities, students practice reasoning through the force interactions at example connections such as a bolted flange or a hinge by considering how the support resists translation and rotation in each direction. Each team works with the aid of a physical model to analyze how changes in the applied loads affect the reaction components. A second model of the isolated body provides opportunity to develop a tactile feel for the reaction forces. We emphasize predicting the direction of each reaction component, rather than following a standard sign convention, to provide opportunities for students to practice conceptual application of equilibrium conditions. Students’ also draw detailed diagrams of the force interactions at the mating surfaces in the connection, including distributed loadings when appropriate. We use equivalent systems concepts to relate these detailed force diagrams to conventional reaction components. Targeted assessments explore whether the approach described above might improve learning outcomes and influence how students think about free-body diagrams. Students use an online tool to attempt two multiple-choice concept questions after each activity. The questions represent near and far transfer applications of the concepts emphasized and prompt students for written explanation. Our analysis of the students’ explanations indicates that most students engage in the conceptual reasoning we encourage, though reasoning errors are common. Analysis of final exam work and comparison to an earlier term in which we used a more conventional approach indicate a majority of students incorporate conceptual reasoning practice into their approach to free-body diagrams. This does not come at the expense of problem-solving accuracy. Student feedback on the activities is overwhelmingly positive.more » « less
An official website of the United States government

