skip to main content

Search for: All records

Award ID contains: 1742195

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2023
  2. In this study, we examine the reported beliefs of two elementary science teachers who co-taught a four-week engineering project in which students used a computational model to design engineering solutions to reduce water runoff at their school (Lilly et al., 2020). Specifically, we explore the beliefs that elementary science teachers report while enacting an engineering project in two different classroom contexts and how they report that their beliefs may have affected instructional decisions. Classroom contexts included one general class with a larger proportion of students in advanced mathematics and one inclusive class with a larger proportion of students with individualized educational programs. During project implementation, we collected daily surveys and weekly interviews to consider teachers’ beliefs of the class sections, classroom activities, and curriculum. Two researchers performed a thematic analysis of the surveys and interviews to code reflections on teachers’ perceived differences between students in the class sections and their experiences teaching engineering in the class sections. Results suggest that teachers’ beliefs about students in these two different classroom contexts may have influenced opportunities that students had to understand and engage in disciplinary practices. The teachers reported making changes to activities based on their perceptions of student understanding and engagementmore »and to save time which led to different experiences for students in each class section, specifically a more teacher-centered implementation for the inclusive class. Teachers also suggested specific professional development and educative supports to help teachers to support all students to engage in engineering tasks. Thus, it is important to understand teachers’ beliefs to build support for teachers in their implementation of engineering projects that meet the needs of their students and ensure that students have access and support to engage in engineering practices.« less
  3. Careers in science, technology, engineering, and mathematics (STEM) increasingly rely on computational thinking (CT) to explore scientific processes and apply scientific knowledge to the solution of real-world problems. Integrating CT with science and engineering also helps broaden participation in computing for students who otherwise would not have access to CT learning. Using a set of emergent design guidelines for scaffolding integrated STEM and CT curricular experiences, we designed the Water Runoff Challenge (WRC) - a three-week unit that integrates Earth science, engineering, and CT. We implemented the WRC with 99 sixth grade students and analyzed students’ learning artifacts and pre/post assessments to characterize students’ learning process in the WRC. We use a vignette to illustrate how anchoring CT tasks to STEM contexts supported CT learning for a student with low prior CT proficiency.
  4. While national frameworks call for the integration of science, technology, engineering, mathematics, and computer science (STEM+CS) in K-12 contexts, few studies consider elementary teachers’ perceptions of implementing STEM+CS projects in science classrooms. This single case study explores elementary science teachers’ perceptions of enacting STEM+CS curricular materials. Survey and interview data were collected over the four-week project and qualitatively coded. Findings demonstrate teachers’ reported struggles to implement unfamiliar disciplines and leverage students’ prior knowledge in familiar disciplines as well as unanticipated consequences of instructional decisions based on perceived student engagement and pacing. Results underscore the value of teacher voice for curricular and professional development and highlight the need for further investigation of how teachers’ perceptions may influence enactment of STEM+CS curricular materials.
  5. Conceptual models serve as both as a design artifact and an object that communicates understanding about underlying systems. As such, conceptual modeling is considered as a crucial component of engineering design. Peer comparison and critique can help students develop conceptual models, yet little research explores how peer comparison activities can support conceptual model development in engineering settings. Therefore, we investigate why and how fifth-grade students made changes to their conceptual models after a peer comparison during a 4-week engineering design curriculum unit focused on water runoff at their school. Data sources included students’ conceptual models before and after the peer comparison, field notes, and student interviews after the peer comparison. To understand how students described their conceptual models and why any changes may have occurred, we interviewed twelve students and coded these interview transcripts at the utterance level. Results show that peer comparison activities can increase conceptual model quality. Further, peer comparison contributes to a diverse set of additional representations in students’ conceptual models. The study suggests peer comparisons of conceptual modeling may support students in realizing their peers are a great source of information, a critical realization to support positive engineering design experiences in K-12 and higher education.
  6. This study investigates how teachers verbally support students to engage in integrated engineering, science, and computer science activities across the implementation of an engineering project. This is important as recent research has focused on understanding how precollege students’ engagement in engineering practices is supported by teachers (Watkins et al., 2018) and the benefits of integrating engineering in precollege classes, including improved achievement in science, ability to engage in science and engineering practices inherent to engineering (i.e., engineering design), and increased awareness of engineering (National Academy of Engineering and the National Research Council; Katehi et al., 2009). Further, there is a national emphasis on integrating engineering, science, and computer science practices and concepts in science classrooms (NGSS Lead States, 2013). Yet little research has considered how teachers implement these disciplines together within one classroom, particularly elementary teachers who often have little prior experience in teaching engineering and may need support to integrate engineering design into elementary science classroom settings. In particular, this study explores how elementary teachers verbally support science and computer science concepts and practices to be implicitly and explicitly integrated into an engineering project by implementing support intended by curricular materials and/or adding their own verbal support. Implicit usemore »of integration included students engaging in integrated practices without support to know that they were doing so; explicit use of integration included teachers providing support for students to know how and why they were integrating disciplines. Our research questions include: (1) To what extent did teachers provide implicit and explicit verbal support of integration in implementation versus how it was intended in curricular materials? (2) Does this look different between two differently-tracked class sections? Participants include two fifth-grade teachers who co-led two fifth-grade classes through a four-week engineering project. The project focused on redesigning school surfaces to mitigate water runoff. Teachers integrated disciplines by supporting students to create computational models of underlying scientific concepts to develop engineering solutions. One class had a larger proportion of students who were tracked into accelerated mathematics; the other class had a larger proportion of students with individualized educational plans (IEPs). Transcripts of whole class discussion were analyzed for instances that addressed the integration of disciplines or supported students to engage in integrated activities. Results show that all instances of integration were implicit for the class with students in advanced mathematics while most were explicit for the class with students with IEPs. Additionally, support was mainly added by the teachers rather than suggested by curricular materials. Most commonly, teachers added integration between computer science and engineering. Implications of this study are an important consideration for the support that teachers need to engage in the important, but challenging, work of integrating science and computer science practices through engineering lessons within elementary science classrooms. Particularly, we consider how to assist teachers with their verbal supports of integrated curricula through engineering lessons in elementary classrooms. This study then has the potential to significantly impact the state of knowledge in interdisciplinary learning through engineering for elementary students.« less
  7. Recent science education reforms, as described in the Framework for K-12 Science Education (NRC, 2012), call for three-dimensional learning that engages students in scientific practices and the use of scientific lenses to learn science content. However, relatively little research at any grade level has focused on how students develop this kind of three-dimensional knowledge that includes crosscutting concepts. This paper aims to contribute to a growing knowledge base that describes how to engage students in three-dimensional learning by exploring to what extent elementary students represent the crosscutting concept systems and system models when engaged in the practice developing and using models as part of an NGSS-aligned curriculum unit. This paper answers the questions: How do students represent elements of crosscutting concepts in conceptual models of water systems? How do students’ representations of crosscutting concepts change related to different task-based scaffolds? To analyze students’ models, we developed and applied a descriptive coding scheme to describe how the students illustrated the flow of water. The results show important differences in how students represented system elements across models. Findings provide insight for the kinds of support that students might need in order to move towards the development of three-dimensional understandings of science content.
  8. We articulate a framework for characterizing student learning trajectories as they progress through a scientific modeling curriculum. By maintaining coherence between modeling representations and leveraging key design principles including evidence-centered design, we develop mechanisms to evaluate student science and computational thinking (CT) proficiency as they transition from conceptual to computational modeling representations. We have analyzed pre-post assessments and learning artifacts from 99 6th grade students and present three contrasting vignettes to illustrate students’ learning trajectories as they work on their modeling tasks. Our analysis indicates pathways that support the transition and identify domain-specific support needs. Our findings will inform refinements to our curriculum and scaffolding of students to further support the integrated learning of science and CT.
  9. Computational Thinking (CT) can play a central role in fostering students' integrated learning of science and engineering. We adopt this framework to design and develop the Water Runoff Challenge (WRC) curriculum for lower middle school students in the USA. This paper presents (1) the WRC curriculum implemented in an integrated computational modeling and engineering design environment and (2) formative and summative assessments used to evaluate learner’s science, engineering, and CT skills as they progress through the curriculum. We derived a series of performance measures associated with student learning from system log data and the assessments. By applying Path Analysis we found significant relations between measures of science, engineering, and CT learning, indicating that they are mutually supportive of learning across these disciplines.