skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: COVIDLies: Detecting COVID-19 Misinformation on Social Media
The ongoing pandemic has heightened the need for developing tools to flag COVID-19-related misinformation on the internet, specifically on social media such as Twitter. However, due to novel language and the rapid change of information, existing misinformation detection datasets are not effective for evaluating systems designed to detect misinformation on this topic. Misinformation detection can be divided into two sub-tasks: (i) retrieval of misconceptions relevant to posts being checked for veracity, and (ii) stance detection to identify whether the posts Agree, Disagree, or express No Stance towards the retrieved misconceptions. To facilitate research on this task, we release COVIDLies (https://ucinlp.github.io/covid19 ), a dataset of 6761 expert-annotated tweets to evaluate the performance of misinformation detection systems on 86 different pieces of COVID-19 related misinformation. We evaluate existing NLP systems on this dataset, providing initial benchmarks and identifying key challenges for future models to improve upon.  more » « less
Award ID(s):
1817183
PAR ID:
10291543
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Redbird, Beth; Harbridge-Yong, Laurel; Mersey, Rachel Davis (Ed.)
    In our analysis, we examine whether the labelling of social media posts as misinformation affects the subsequent sharing of those posts by social media users. Conventional understandings of the presentation-of-self and work in cognitive psychology provide different understandings of whether labelling misinformation in social media posts will reduce sharing behavior. Part of the problem with understanding whether interventions will work hinges on how closely social media interactions mirror other interpersonal interactions with friends and associates in the off-line world. Our analysis looks at rates of misinformation labelling during the height of the COVID-19 pandemic on Facebook and Twitter, and then assesses whether sharing behavior is deterred misinformation labels applied to social media posts. Our results suggest that labelling is relatively successful at lowering sharing behavior, and we discuss how our results contribute to a larger understanding of the role of existing inequalities and government responses to crises like the COVID-19 pandemic. 
    more » « less
  2. Guidi, Barbara (Ed.)
    The COVID-19 pandemic brought widespread attention to an “infodemic” of potential health misinformation. This claim has not been assessed based on evidence. We evaluated if health misinformation became more common during the pandemic. We gathered about 325 million posts sharing URLs from Twitter and Facebook during the beginning of the pandemic (March 8-May 1, 2020) compared to the same period in 2019. We relied on source credibility as an accepted proxy for misinformation across this database. Human annotators also coded a subsample of 3000 posts with URLs for misinformation. Posts about COVID-19 were 0.37 times as likely to link to “not credible” sources and 1.13 times more likely to link to “more credible” sources than prior to the pandemic. Posts linking to “not credible” sources were 3.67 times more likely to include misinformation compared to posts from “more credible” sources. Thus, during the earliest stages of the pandemic, when claims of an infodemic emerged, social media contained proportionally less misinformation than expected based on the prior year. Our results suggest that widespread health misinformation is not unique to COVID-19. Rather, it is a systemic feature of online health communication that can adversely impact public health behaviors and must therefore be addressed. 
    more » « less
  3. Misinformation runs rampant on social media and has been tied to adverse health behaviors such as vaccine hesitancy. Crowdsourcing can be a means to detect and impede the spread of misinformation online. However, past studies have not deeply examined the individual characteristics - such as cognitive factors and biases - that predict crowdworker accuracy at identifying misinformation. In our study (n = 265), Amazon Mechanical Turk (MTurk) workers and university students assessed the truthfulness and sentiment of COVID-19 related tweets as well as answered several surveys on personal characteristics. Results support the viability of crowdsourcing for assessing misinformation and content stance (i.e., sentiment) related to ongoing and politically-charged topics like the COVID-19 pandemic, however, alignment with experts depends on who is in the crowd. Specifically, we find that respondents with high Cognitive Reflection Test (CRT) scores, conscientiousness, and trust in medical scientists are more aligned with experts while respondents with high Need for Cognitive Closure (NFCC) and those who lean politically conservative are less aligned with experts. We see differences between recruitment platforms as well, as our data shows university students are on average more aligned with experts than MTurk workers, most likely due to overall differences in participant characteristics on each platform. Results offer transparency into how crowd composition affects misinformation and stance assessment and have implications on future crowd recruitment and filtering practices. 
    more » « less
  4. Crises such as the COVID-19 pandemic continuously threaten our world and emotionally affect billions of people worldwide in distinct ways. Understanding the triggers leading to people’s emotions is of crucial importance. Social media posts can be a good source of such analysis, yet these texts tend to be charged with multiple emotions, with triggers scattering across multiple sentences. This paper takes a novel angle, namely, emotion detection and trigger summarization, aiming to both detect perceived emotions in text, and summarize events and their appraisals that trigger each emotion. To support this goal, we introduce CovidET (Emotions and their Triggers during Covid-19), a dataset of ~1,900 English Reddit posts related to COVID-19, which contains manual annotations of perceived emotions and abstractive summaries of their triggers described in the post. We develop strong baselines to jointly detect emotions and summarize emotion triggers. Our analyses show that CovidET presents new challenges in emotion-specific summarization, as well as multi-emotion detection in long social media posts. 
    more » « less
  5. While COVID-19 text misinformation has already been investigated by various scholars, fewer research efforts have been devoted to characterizing and understanding COVID-19 misinformation that is carried out through visuals like photographs and memes. In this paper, we present a mixed-method analysis of image-based COVID-19 misinformation in 2020 on Twitter. We deploy a computational pipeline to identify COVID-19 related tweets, download the images contained in them, and group together visually similar images. We then develop a codebook to characterize COVID-19 misinformation and manually label images as misinformation or not. Finally, we perform a quantitative analysis of tweets containing COVID-19 misinformation images. We identify five types of COVID-19 misinformation, from a wrong understanding of the threat severity of COVID-19 to the promotion of fake cures and conspiracy theories. We also find that tweets containing COVID-19 misinformation images do not receive more interactions than baseline tweets with random images posted by the same set of users. As for temporal properties, COVID-19 misinformation images are shared for longer periods of time than non-misinformation ones, as well as have longer burst times. %\ywi added "have'' %\ywFor RQ2, we compare non-misinformation images instead of random images, and so it is not a direct comparison. When looking at the users sharing COVID-19 misinformation images on Twitter from the perspective of their political leanings, we find that pro-Democrat and pro-Republican users share a similar amount of tweets containing misleading or false COVID-19 images. However, the types of images that they share are different: while pro-Democrat users focus on misleading claims about the Trump administration's response to the pandemic, as well as often sharing manipulated images intended as satire, pro-Republican users often promote hydroxychloroquine, an ineffective medicine against COVID-19, as well as conspiracy theories about the origin of the virus. Our analysis sets a basis for better understanding COVID-19 misinformation images on social media and the nuances in effectively moderate them. 
    more » « less