Understanding what leads to emotions during large-scale crises is important as it can provide groundings for expressed emotions and subsequently improve the understanding of ongoing disasters. Recent approaches trained supervised models to both detect emotions and explain emotion triggers (events and appraisals) via abstractive summarization. However, obtaining timely and qualitative abstractive summaries is expensive and extremely time-consuming, requiring highly-trained expert annotators. In time-sensitive, high-stake contexts, this can block necessary responses. We instead pursue unsupervised systems that extract triggers from text. First, we introduce CovidET-EXT, augmenting (Zhan et al., 2022)’s abstractive dataset (in the context of the COVID-19 crisis) with extractive triggers. Second, we develop new unsupervised learning models that can jointly detect emotions and summarize their triggers. Our best approach, entitled Emotion-Aware Pagerank, incorporates emotion information from external sources combined with a language understanding module, and outperforms strong baselines. We release our data and code at https://github.com/tsosea2/CovidET-EXT.
more »
« less
Why Do You Feel This Way? Summarizing Triggers of Emotions in Social Media Posts
Crises such as the COVID-19 pandemic continuously threaten our world and emotionally affect billions of people worldwide in distinct ways. Understanding the triggers leading to people’s emotions is of crucial importance. Social media posts can be a good source of such analysis, yet these texts tend to be charged with multiple emotions, with triggers scattering across multiple sentences. This paper takes a novel angle, namely, emotion detection and trigger summarization, aiming to both detect perceived emotions in text, and summarize events and their appraisals that trigger each emotion. To support this goal, we introduce CovidET (Emotions and their Triggers during Covid-19), a dataset of ~1,900 English Reddit posts related to COVID-19, which contains manual annotations of perceived emotions and abstractive summaries of their triggers described in the post. We develop strong baselines to jointly detect emotions and summarize emotion triggers. Our analyses show that CovidET presents new challenges in emotion-specific summarization, as well as multi-emotion detection in long social media posts.
more »
« less
- PAR ID:
- 10432254
- Date Published:
- Journal Name:
- Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
- Page Range / eLocation ID:
- 9436 - 9453
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Situations and events evoke emotions in humans, but to what extent do they inform the prediction of emotion detection models? This work investigates how well human-annotated emotion triggers correlate with features that models deemed salient in their prediction of emotions. First, we introduce a novel dataset EmoTrigger, consisting of 900 social media posts sourced from three different datasets; these were annotated by experts for emotion triggers with high agreement. Using EmoTrigger, we evaluate the ability of large language models (LLMs) to identify emotion triggers, and conduct a comparative analysis of the features considered important for these tasks between LLMs and fine-tuned models. Our analysis reveals that emotion triggers are largely not considered salient features for emotion prediction models, instead there is intricate interplay between various features and the task of emotion detection.more » « less
-
Background As a number of vaccines for COVID-19 are given emergency use authorization by local health agencies and are being administered in multiple countries, it is crucial to gain public trust in these vaccines to ensure herd immunity through vaccination. One way to gauge public sentiment regarding vaccines for the goal of increasing vaccination rates is by analyzing social media such as Twitter. Objective The goal of this research was to understand public sentiment toward COVID-19 vaccines by analyzing discussions about the vaccines on social media for a period of 60 days when the vaccines were started in the United States. Using the combination of topic detection and sentiment analysis, we identified different types of concerns regarding vaccines that were expressed by different groups of the public on social media. Methods To better understand public sentiment, we collected tweets for exactly 60 days starting from December 16, 2020 that contained hashtags or keywords related to COVID-19 vaccines. We detected and analyzed different topics of discussion of these tweets as well as their emotional content. Vaccine topics were identified by nonnegative matrix factorization, and emotional content was identified using the Valence Aware Dictionary and sEntiment Reasoner sentiment analysis library as well as by using sentence bidirectional encoder representations from transformer embeddings and comparing the embedding to different emotions using cosine similarity. Results After removing all duplicates and retweets, 7,948,886 tweets were collected during the 60-day time period. Topic modeling resulted in 50 topics; of those, we selected 12 topics with the highest volume of tweets for analysis. Administration and access to vaccines were some of the major concerns of the public. Additionally, we classified the tweets in each topic into 1 of the 5 emotions and found fear to be the leading emotion in the tweets, followed by joy. Conclusions This research focused not only on negative emotions that may have led to vaccine hesitancy but also on positive emotions toward the vaccine. By identifying both positive and negative emotions, we were able to identify the public's response to the vaccines overall and to news events related to the vaccines. These results are useful for developing plans for disseminating authoritative health information and for better communication to build understanding and trust.more » « less
-
null (Ed.)The ongoing pandemic has heightened the need for developing tools to flag COVID-19-related misinformation on the internet, specifically on social media such as Twitter. However, due to novel language and the rapid change of information, existing misinformation detection datasets are not effective for evaluating systems designed to detect misinformation on this topic. Misinformation detection can be divided into two sub-tasks: (i) retrieval of misconceptions relevant to posts being checked for veracity, and (ii) stance detection to identify whether the posts Agree, Disagree, or express No Stance towards the retrieved misconceptions. To facilitate research on this task, we release COVIDLies (https://ucinlp.github.io/covid19 ), a dataset of 6761 expert-annotated tweets to evaluate the performance of misinformation detection systems on 86 different pieces of COVID-19 related misinformation. We evaluate existing NLP systems on this dataset, providing initial benchmarks and identifying key challenges for future models to improve upon.more » « less
-
Understanding emotions that people express during large-scale crises helps inform policy makers and first responders about the emotional states of the population as well as provide emotional support to those who need such support. We present CovidEmo, a dataset of ~3,000 English tweets labeled with emotions and temporally distributed across 18 months. Our analyses reveal the emotional toll caused by COVID-19, and changes of the social narrative and associated emotions over time. Motivated by the time-sensitive nature of crises and the cost of large-scale annotation efforts, we examine how well large pre-trained language models generalize across domains and timeline in the task of perceived emotion prediction in the context of COVID-19. Our analyses suggest that cross-domain information transfers occur, yet there are still significant gaps. We propose semi-supervised learning as a way to bridge this gap, obtaining significantly better performance using unlabeled data from the target domain.more » « less