skip to main content


Title: Elementary reaction-based kinetic model for the fate of N -nitrosodimethylamine under UV oxidation
UV photolysis is an effective process to remove nitrosamines from contaminated water resources. Nitrosamines represent a class of compounds with high potential for carcinogenicity and, therefore, there are serious concerns regarding their threat to human health and their environmental toxicity. Although the photochemical parameters of parent nitrosamines and their initial reaction pathways are well understood, the fate of nitrogen-containing species and reactive nitrogen species generated from nitrosamine degradation has not yet been elucidated. In this study, we develop an elementary reaction-based kinetic model for the photolysis of N -nitrosodimethylamine (NDMA) and the photochemical transformation products. We use density functional theory quantum mechanical calculations to calculate the aqueous-phase free energies of activation and reaction to investigate the kinetics and thermodynamics properties of the elementary reactions. We generate ordinary differential equations for all species involved in the identified reactions and solve them to obtain the time-dependent concentration profiles of NDMA and the degradation products at pH 3 and pH 7. The profiles are compared to experimental results in the literature to validate our elementary reaction-based kinetic model. This is the first study to develop an elementary reaction-based kinetic model for the photochemical reaction of NDMA and reactive nitrogen species. The findings of this study have a significant impact on the active research area of nitrosative stress and advanced oxidation processes that utilize nitrogen-containing compounds such as UV/nitrate and UV/chloramine advanced oxidation processes.  more » « less
Award ID(s):
1808052
NSF-PAR ID:
10291586
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Environmental Science: Water Research & Technology
ISSN:
2053-1400
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Iron (Fe) is ubiquitous in nature and found as Fe II or Fe III in minerals or as dissolved ions Fe 2+ or Fe 3+ in aqueous systems. The interactions of soluble Fe have important implications for fresh water and marine biogeochemical cycles, which have impacts on global terrestrial and atmospheric environments. Upon dissolution of Fe III into natural aquatic systems, organic carboxylic acids efficiently chelate Fe III to form [Fe III –carboxylate] 2+ complexes that undergo a wide range of photochemistry-induced radical reactions. The chemical composition and photochemical transformations of these mixtures are largely unknown, making it challenging to estimate their environmental impact. To investigate the photochemical process of Fe III –carboxylates at the molecular level, we conduct a comprehensive experimental study employing UV-visible spectroscopy, liquid chromatography coupled to photodiode array and high-resolution mass spectrometry detection, and oil immersion flow microscopy. In this study, aqueous solutions of Fe III –citrate were photolyzed under 365 nm light in an experimental setup with an apparent quantum yield of ( φ ) ∼0.02, followed by chemical analyses of reacted mixtures withdrawn at increment time intervals of the experiment. The apparent photochemical reaction kinetics of Fe 3+ –citrates (aq) were expressed as two generalized consecutive reactions of with the experimental rate constants of j 1 ∼ 0.12 min −1 and j 2 ∼ 0.05 min −1 , respectively. Molecular characterization results indicate that R and I consist of both water-soluble organic and Fe–organic species, while P compounds are a mixture of water-soluble and colloidal materials. The latter were identified as Fe–carbonaceous colloids formed at long photolysis times. The carbonaceous content of these colloids was identified as unsaturated organic species with low oxygen content and carbon with a reduced oxidation state, indicative of their plausible radical recombination mechanism under oxygen-deprived conditions typical for the extensively photolyzed mixtures. Based on the molecular characterization results, we discuss the comprehensive reaction mechanism of Fe III –citrate photochemistry and report on the formation of previously unexplored colloidal reaction products, which may contribute to atmospheric and terrestrial light-absorbing materials in aquatic environments. 
    more » « less
  2. null (Ed.)
    The photolysis of hypochlorous acid (HOCl) and hypochlorite (OCl − ) produces a suite of reactive oxidants, including hydroxyl radical (˙OH), chlorine radical (Cl˙), and ozone (O 3 ). Therefore, the addition of light to chlorine disinfection units could effectively convert existing drinking water treatment systems into advanced oxidation processes. This review critically examines existing studies on chlorine photolysis as a water treatment process. After describing the fundamental chemistry of chlorine photolysis, we evaluate the ability of chlorine photolysis to transform model probe compounds, target organic contaminants, and chlorine-resistant microorganisms. The efficacy of chlorine photolysis to produce reactive oxidants is dependent on solution and irradiation conditions ( e.g. , pH and irradiation wavelengths). For example, lower pH values result in higher steady-state concentrations of ˙OH and Cl˙, resulting in enhanced contaminant removal. We also present the current state of knowledge on the alteration of dissolved organic matter and subsequent formation of disinfection by-products (DBPs) during chlorine photolysis. Although the relative yields of DBPs during chlorine photolysis are also dependent on solution conditions ( e.g. , higher organic DBP yields at low pH values), there is conflicting evidence on whether chlorine photolysis increases or decreases DBP production compared to thermal reactions between chlorine and dissolved organic matter in the dark. We conclude the review by identifying knowledge gaps in the current body of literature. 
    more » « less
  3. null (Ed.)
    As one of the most powerful approaches to mechanistically understanding complex chemical reaction systems and performing simulations or predictions, kinetic modeling has been widely used to investigate advanced oxidation processes (AOPs). However, most of the available models are built based on limited systems or reaction mechanisms so they cannot be readily extended to other systems or reaction conditions. To overcome such limitations, this study developed a comprehensive model on phenol oxidation with over 550 reactions, covering the most common reaction mechanisms in nine AOPs—four peroxymonosulfate (PMS), four peroxydisulfate (PDS), and one H2O2 systems—and considering the effects of co-existing anions (chloride, bromide, and carbonate) and product formation. Existing models in the literature were first gathered and revised by correcting inaccurately used reactions and adding other necessary reactions. Extensive model tuning and validation were then conducted by fitting the model against experimental data from both this study and the literature. When investigating the effects of anions, we found that PDS/CuO suffered the least impact, followed by the H2O2/UV and other PDS systems, and finally the PMS systems. Halogenated organic byproducts were mainly observed in the PMS systems in the presence of halides. Most of the 556 reactions were found to be important based on the sensitivity analysis, with some involving anions even among the most important, which explained why these anions can substantially alter some of the reaction systems. With this comprehensive model, a deep understanding and reliable prediction can be made for the oxidation of phenol (and likely other phenolic compounds) in systems containing one or more of the above AOPs. 
    more » « less
  4. Abstract. Nitrogen-containing organic compounds, which may be directly emitted into the atmosphere or which may form via reactions with prevalent reactive nitrogen species (e.g., NH3, NOx, NO3), have important but uncertaineffects on climate and human health. Using gas and liquid chromatographywith soft ionization and high-resolution mass spectrometry, we performed amolecular-level speciation of functionalized organic compounds at a coastal site on the Long Island Sound in summer (during the 2018 Long Island Sound Tropospheric Ozone Study – LISTOS – campaign) and winter. This region often experiences poor air quality due to theemissions of reactive anthropogenic, biogenic, and marine-derived compoundsand their chemical transformation products. We observed a range offunctionalized compounds containing oxygen, nitrogen, and/or sulfur atomsresulting from these direct emissions and chemical transformations,including photochemical and aqueous-phase processing that was more pronounced in summer and winter, respectively. In both summer and winter, nitrogen-containing organic aerosols dominated the observed distribution offunctionalized particle-phase species ionized by our analytical techniques,with 85 % and 68 % of total measured ion abundance containing a nitrogenatom, respectively. Nitrogen-containing particles included reduced nitrogen functional groups (e.g., amines, imines, azoles) and common NOz contributors (e.g., organonitrates). Reduced nitrogen functional groups observed in the particle phase were frequently paired with oxygen-containing groups elsewhere on the molecule, and their prevalence often rivaled that of oxidized nitrogen groups detected by our methods. Supplemental gas-phasemeasurements, collected on adsorptive samplers and analyzed with a novelliquid chromatography-based method, suggest that gas-phase reduced nitrogen compounds are possible contributing precursors to the observed nitrogen-containing particles. Altogether, this work highlights theprevalence of reduced nitrogen-containing compounds in the less-studied northeastern US and potentially in other regions with similar anthropogenic, biogenic, and marine source signatures. 
    more » « less
  5. Abstract. Oxidation flow reactors (OFRs) are a promising complement toenvironmental chambers for investigating atmospheric oxidation processes andsecondary aerosol formation. However, questions have been raised about howrepresentative the chemistry within OFRs is of that in the troposphere. Weinvestigate the fates of organic peroxy radicals (RO2), which playa central role in atmospheric organic chemistry, in OFRs and environmentalchambers by chemical kinetic modeling and compare to a variety of ambientconditions to help define a range of atmospherically relevant OFR operatingconditions. For most types of RO2, their bimolecular fates in OFRsare mainly RO2+HO2 and RO2+NO, similar to chambers andatmospheric studies. For substituted primary RO2 and acylRO2, RO2+RO2 can make a significant contribution tothe fate of RO2 in OFRs, chambers and the atmosphere, butRO2+RO2 in OFRs is in general somewhat less important than inthe atmosphere. At high NO, RO2+NO dominates RO2 fate inOFRs, as in the atmosphere. At a high UV lamp setting in OFRs,RO2+OH can be a major RO2 fate and RO2isomerization can be negligible for common multifunctional RO2,both of which deviate from common atmospheric conditions. In the OFR254operation mode (for which OH is generated only from the photolysis of addedO3), we cannot identify any conditions that can simultaneouslyavoid significant organic photolysis at 254 nm and lead to RO2lifetimes long enough (∼ 10 s) to allow atmospherically relevantRO2 isomerization. In the OFR185 mode (for which OH is generatedfrom reactions initiated by 185 nm photons), high relative humidity, low UVintensity and low precursor concentrations are recommended for theatmospherically relevant gas-phase chemistry of both stable species andRO2. These conditions ensure minor or negligible RO2+OHand a relative importance of RO2 isomerization in RO2fate in OFRs within ×2 of that in the atmosphere. Under theseconditions, the photochemical age within OFR185 systems can reach a fewequivalent days at most, encompassing the typical ages for maximum secondaryorganic aerosol (SOA) production. A small increase in OFR temperature mayallow the relative importance of RO2 isomerization to approach theambient values. To study the heterogeneous oxidation of SOA formed underatmospherically relevant OFR conditions, a different UV source with higherintensity is needed after the SOA formation stage, which can be done withanother reactor in series. Finally, we recommend evaluating the atmosphericrelevance of RO2 chemistry by always reporting measured and/orestimated OH, HO2, NO, NO2 and OH reactivity (or at leastprecursor composition and concentration) in all chamber and flow reactorexperiments. An easy-to-use RO2 fate estimator program is includedwith this paper to facilitate the investigation of this topic in futurestudies.

     
    more » « less