The ubiquity of AI in society means the time is ripe to consider what educated 21st century digital citizens should know about this subject. In May 2018, the Association for the Advancement of Artificial Intelligence (AAAI) and the Computer Science Teachers Association (CSTA) formed a joint working group to develop national guidelines for teaching AI to K-12 students. Inspired by CSTA's national standards for K-12 computing education, the AI for K-12 guidelines will define what students in each grade band should know about artificial intelligence, machine learning, and robotics. The AI for K-12 working group is also creating an online resource directory where teachers can find AI- related videos, demos, software, and activity descriptions they can incorporate into their lesson plans. This blue sky talk invites the AI research community to reflect on the big ideas in AI that every K-12 student should know, and how we should communicate with the public about advances in AI and their future impact on society. It is a call to action for more AI researchers to become AI educators, creating resources that help teachers and students understand our work.
more »
« less
Expanse : Computing without Boundaries
We describe the design motivation, architecture, deployment, and early operations of Expanse, a 5 Petaflop, heterogenous HPC system that entered production as an NSF-funded resource in December 2020 and will be operated on behalf of the national community for five years. Expanse will serve a broad range of computational science and engineering through a combination of standard batch-oriented services, and by extending the system to the broader CI ecosystem through science gateways, public cloud integration, support for high throughput computing, and composable systems. Expanse was procured, deployed, and put into production entirely during the COVID-19 pandemic, adhering to stringent public health guidelines throughout. Nevertheless, the planned production date of October 1, 2020 slipped by only two months, thanks to thorough planning, a dedicated team of technical and administrative experts, collaborative vendor partnerships, and a commitment to getting an important national computing resource to the community at a time of great need.
more »
« less
- PAR ID:
- 10291594
- Date Published:
- Journal Name:
- Practice & Experience in Advanced Research Computing (PEARC)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Global change research demands a convergence among academic disciplines to understand complex changes in Earth system function. Limitations related to data usability and computing infrastructure, however, present barriers to effective use of the research tools needed for this cross-disciplinary collaboration. To address these barriers, we created a computational platform that pairs meteorological data and site-level ecosystem characterizations from the National Ecological Observatory Network (NEON) with the Community Terrestrial System Model (CTSM) that is developed with university partners at the National Center for Atmospheric Research (NCAR). This NCAR–NEON system features a simplified user interface that facilitates access to and use of NEON observations and NCAR models. We present preliminary results that compare observed NEON fluxes with CTSM simulations and describe how the collaboration between NCAR and NEON that can be used by the global change research community improves both the data and model. Beyond datasets and computing, the NCAR–NEON system includes tutorials and visualization tools that facilitate interaction with observational and model datasets and further enable opportunities for teaching and research. By expanding access to data, models, and computing, cyberinfrastructure tools like the NCAR–NEON system will accelerate integration across ecology and climate science disciplines to advance understanding in Earth system science and global change.more » « less
-
The Broader Impacts (BI) activities required of researchers funded by the National Science Foundation (NSF) often involve public engagement, including K-12 outreach, informal science education, public exhibits and performances, advocacy and policy change, and business and entrepreneurship. The ARIS Broader Impacts Toolkit (Advancing Research Impacts in Society, 2024) is an online resource designed to help researchers develop BI plans for their NSF proposals. Several elements of the Toolkit address critical aspects of public engagement, making the Toolkit a valuable resource for researchers new to BI or public engagement, especially when integrated into wider BI communities of practice. We discuss how the national-level BI Community of Practice (BI-CoP) developed and sustained by the NSF-funded Center for Advancing Research Impacts in Society (ARIS) contributed to the development and continuing evolution of an institutional-level BI CoP at a large land-grant public university. The personal narratives of members of the institutional-level BI-CoP reveal how the ARIS BI-CoP has supported their learning, fostered collaboration around BI at their institution, supported the development of an institutional BI-CoP, and increased their capacity to assist researchers with developing and implementing BI plans. The experiences of consultants and researchers demonstrate that supportive and well-resourced BI-CoPs at the national and institutional level are essential for making effective use of the Toolkit and developing BI plans that are innovative, inclusive, and impactful.more » « less
-
Abstract Population growth and climate change will impact food security and potentially exacerbate the environmental toll that agriculture has taken on our planet. These existential concerns demand that a passionate, interdisciplinary, and diverse community of plant science professionals is trained during the 21st century. Furthermore, societal trends that question the importance of science and expert knowledge highlight the need to better communicate the value of rigorous fundamental scientific exploration. Engaging students and the general public in the wonder of plants, and science in general, requires renewed efforts that take advantage of advances in technology and new models of funding and knowledge dissemination. In November 2018, funded by the National Science Foundation through the Arabidopsis Research and Training for the 21st century (ART 21) research coordination network, a symposium and workshop were held that included a diverse panel of students, scientists, educators, and administrators from across the US. The purpose of the workshop was to re‐envision how outreach programs are funded, evaluated, acknowledged, and shared within the plant science community. One key objective was to generate a roadmap for future efforts. We hope that this document will serve as such, by providing a comprehensive resource for students and young faculty interested in developing effective outreach programs. We also anticipate that this document will guide the formation of community partnerships to scale up currently successful outreach programs, and lead to the design of future programs that effectively engage with a more diverse student body and citizenry.more » « less
-
While bees are critical to sustaining a large proportion of global food production, as well as pollinating both wild and cultivated plants, they are decreasing in both numbers and diversity. Our understanding of the factors driving these declines is limited, in part, because we lack sufficient data on the distribution of bee species to predict changes in their geographic range under climate change scenarios. Additionally lacking is adequate data on the behavioral and anatomical traits that may make bees either vulnerable or resilient to human-induced environmental changes, such as habitat loss and climate change. Fortunately, a wealth of associated attributes can be extracted from the specimens deposited in natural history collections for over 100 years. Extending Anthophila Research Through Image and Trait Digitization (Big-Bee) is a newly funded US National Science Foundation Advancing Digitization of Biodiversity Collections project. Over the course of three years, we will create over one million high-resolution 2D and 3D images of bee specimens (Fig. 1), representing over 5,000 worldwide bee species, including most of the major pollinating species. We will also develop tools to measure bee traits from images and generate comprehensive bee trait and image datasets to measure changes through time. The Big-Bee network of participating institutions includes 13 US institutions (Fig. 2) and partnerships with US government agencies. We will develop novel mechanisms for sharing image datasets and datasets of bee traits that will be available through an open, Symbiota-Light (Gilbert et al. 2020) data portal called the Bee Library. In addition, biotic interaction and species association data will be shared via Global Biotic Interactions (Poelen et al. 2014). The Big-Bee project will engage the public in research through community science via crowdsourcing trait measurements and data transcription from images using Notes from Nature (Hill et al. 2012). Training and professional development for natural history collection staff, researchers, and university students in data science will be provided through the creation and implementation of workshops focusing on bee traits and species identification. We are also planning a short, artistic college radio segment called "the Buzz" to get people excited about bees, biodiversity, and the wonders of our natural world.more » « less
An official website of the United States government

