skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: Automatable Distributed Regression Analysis of Vertically Partitioned Data Facilitated by PopMedNet: Feasibility and Enhancement Study
Background In clinical research, important variables may be collected from multiple data sources. Physical pooling of patient-level data from multiple sources often raises several challenges, including proper protection of patient privacy and proprietary interests. We previously developed an SAS-based package to perform distributed regression—a suite of privacy-protecting methods that perform multivariable-adjusted regression analysis using only summary-level information—with horizontally partitioned data, a setting where distinct cohorts of patients are available from different data sources. We integrated the package with PopMedNet, an open-source file transfer software, to facilitate secure file transfer between the analysis center and the data-contributing sites. The feasibility of using PopMedNet to facilitate distributed regression analysis (DRA) with vertically partitioned data, a setting where the data attributes from a cohort of patients are available from different data sources, was unknown. Objective The objective of the study was to describe the feasibility of using PopMedNet and enhancements to PopMedNet to facilitate automatable vertical DRA (vDRA) in real-world settings. Methods We gathered the statistical and informatic requirements of using PopMedNet to facilitate automatable vDRA. We enhanced PopMedNet based on these requirements to improve its technical capability to support vDRA. Results PopMedNet can enable automatable vDRA. We identified and implemented two enhancements to PopMedNet that improved its technical capability to perform automatable vDRA in real-world settings. The first was the ability to simultaneously upload and download multiple files, and the second was the ability to directly transfer summary-level information between the data-contributing sites without a third-party analysis center. Conclusions PopMedNet can be used to facilitate automatable vDRA to protect patient privacy and support clinical research in real-world settings.  more » « less
Award ID(s):
1853209
PAR ID:
10291646
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
JMIR Medical Informatics
Volume:
9
Issue:
4
ISSN:
2291-9694
Page Range / eLocation ID:
e21459
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Logistic regression (LR) is a widely used classification method for modeling binary outcomes in many medical data classification tasks. Researchers that collect and combine datasets from various data custodians and jurisdictions can greatly benefit from the increased statistical power to support their analysis goals. However, combining data from different sources creates serious privacy concerns that need to be addressed. Methods In this paper, we propose two privacy-preserving protocols for performing logistic regression with the Newton–Raphson method in the estimation of parameters. Our proposals are based on secure Multi-Party Computation (MPC) and tailored to the honest majority and dishonest majority security settings. Results The proposed protocols are evaluated against both synthetic and real-world datasets in terms of efficiency and accuracy, and a comparison is made with the ordinary logistic regression. The experimental results demonstrate that the proposed protocols are highly efficient and accurate. Conclusions Our work introduces two iterative algorithms to enable the distributed training of a logistic regression model in a privacy-preserving manner. The implementation results show that our algorithms can handle large datasets from multiple sources. 
    more » « less
  2. null (Ed.)
    The Metabolomics Workbench (MW) is a public scientific data repository consisting of experimental data and metadata from metabolomics studies collected with mass spectroscopy (MS) and nuclear magnetic resonance (NMR) analyses. MW has been constantly evolving; updating its ‘mwTab’ text file format, adding a JavaScript Object Notation (JSON) file format, implementing a REpresentational State Transfer (REST) interface, and nearly quadrupling the number of datasets hosted on the repository within the last three years. In order to keep up with the quickly evolving state of the MW repository, the ‘mwtab’ Python library and package have been continuously updated to mirror the changes in the ‘mwTab’ and JSONized formats and contain many new enhancements including methods for interacting with the MW REST interface, enhanced format validation features, and advanced features for parsing and searching for specific metabolite data and metadata. We used the enhanced format validation features to evaluate all available datasets in MW to facilitate improved curation and FAIRness of the repository. The ‘mwtab’ Python package is now officially released as version 1.0.1 and is freely available on GitHub and the Python Package Index (PyPI) under a Clear Berkeley Software Distribution (BSD) license with documentation available on ReadTheDocs. 
    more » « less
  3. IEEE/IFIP (Ed.)
    We investigate the feasibility of targeted privacy attacks using only information available in physical channels of LTE mobile networks and propose three privacy attacks to demonstrate this feasibility: mobile-app fingerprinting attack, history attack, and correlation attack. These attacks can reveal the geolocation of targeted mobile devices, the victim's app usage patterns, and even the relationship between two users within the same LTE network cell. An attacker also may launch these attacks stealthily by capturing radio signals transmitted over the air, using only a passive sniffer as equipment. To ensure the impact of these attacks on mobile users' privacy, we perform evaluations in both laboratory and real-world settings, demonstrating their practicality and dependability. Furthermore, we argue that these attacks can target not only 4G/LTE but also the evolving 5G standards. 
    more » « less
  4. Background The proliferation of mobile health (mHealth) applications is partly driven by the advancements in sensing and communication technologies, as well as the integration of artificial intelligence techniques. Data collected from mHealth applications, for example, on sensor devices carried by patients, can be mined and analyzed using artificial intelligence–based solutions to facilitate remote and (near) real-time decision-making in health care settings. However, such data often sit in data silos, and patients are often concerned about the privacy implications of sharing their raw data. Federated learning (FL) is a potential solution, as it allows multiple data owners to collaboratively train a machine learning model without requiring access to each other’s raw data. Objective The goal of this scoping review is to gain an understanding of FL and its potential in dealing with sensitive and heterogeneous data in mHealth applications. Through this review, various stakeholders, such as health care providers, practitioners, and policy makers, can gain insight into the limitations and challenges associated with using FL in mHealth and make informed decisions when considering implementing FL-based solutions. Methods We conducted a scoping review following the guidelines of PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews). We searched 7 commonly used databases. The included studies were analyzed and summarized to identify the possible real-world applications and associated challenges of using FL in mHealth settings. Results A total of 1095 articles were retrieved during the database search, and 26 articles that met the inclusion criteria were included in the review. The analysis of these articles revealed 2 main application areas for FL in mHealth, that is, remote monitoring and diagnostic and treatment support. More specifically, FL was found to be commonly used for monitoring self-care ability, health status, and disease progression, as well as in diagnosis and treatment support of diseases. The review also identified several challenges (eg, expensive communication, statistical heterogeneity, and system heterogeneity) and potential solutions (eg, compression schemes, model personalization, and active sampling). Conclusions This scoping review has highlighted the potential of FL as a privacy-preserving approach in mHealth applications and identified the technical limitations associated with its use. The challenges and opportunities outlined in this review can inform the research agenda for future studies in this field, to overcome these limitations and further advance the use of FL in mHealth. 
    more » « less
  5. Discovery of causal relations from observational data is essential for many disciplines of science and real-world applications. However, unlike other machine learning algorithms, whose development has been greatly fostered by a large amount of available benchmark datasets, causal discovery algorithms are notoriously difficult to be systematically evaluated because few datasets with known ground-truth causal relations are available. In this work, we handle the problem of evaluating causal discovery algorithms by building a flexible simulator in the medical setting. We develop a neuropathic pain diagnosis simulator, inspired by the fact that the biological processes of neuropathic pathophysiology are well studied with well-understood causal influences. Our simulator exploits the causal graph of theneuropathic pain pathology and its parameters in the generator are estimated from real-life patient cases. We show that the data generated from our simulator have similar statistics as real-world data. As a clear advantage, the simulator can produce infinite samples without jeopardizing the privacy of real-world patients. Our simulator provides a natural tool for evaluating various types of causal discovery algorithms, including those to deal with practical issues in causal discovery, such as unknown confounders, selection bias, and missing data. Using our simulator,we have evaluated extensively causal discovery algorithms under various settings. 
    more » « less