skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Opening the Black Box: Investigating Student Understanding of Data Displays Using Programmable Sensor Technology
This paper describes the design and classroom implementation of a week-long unit that aims to integrate computational thinking (CT) into middle school science classes using programmable sensor technology. The goals of this sensor immersion unit are to help students understand why and how to use sensor and visualization technology as a powerful data-driven tool for scientific inquiry in ways that align with modern scientific practice. The sensor immersion unit is anchored in the investigation of classroom data where students engage with the sensor technology to ask questions about and design displays of the collected data. Students first generate questions about how data data displays work and then proceed through a set of programming exercises to help them understand how to collect and display data collected from their classrooms by building their own mini data displays. Throughout the unit students draw and update their hand drawn models representing their current understanding of how the data displays work. The sensor immersion unit was implemented by ten middle school science teachers during the 2019/2020 school year. Student drawn models of the classroom data displays from four of these teachers were analyzed to examine students’ understandings in four areas: func- tion of sensor components, process models of data flow, design of data displays, and control of the display. Students showed the best understanding when describing sensor components. Students exhibited greater confusion when describing the process of how data streams moved through displays and how programming controlled the data displays.  more » « less
Award ID(s):
1742053 1742046
PAR ID:
10291753
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Computing Education Research
Page Range / eLocation ID:
291 to 301
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes the design and classroom implementation of a week-long unit that aims to integrate computational thinking (CT) into middle school science classes using programmable sensor technology. The goals of this sensor immersion unit are to help students understand why and how to use sensor and visualization technology as a powerful data-driven tool for scientific inquiry in ways that align with modern scientific practice. The sensor immersion unit is anchored in the investigation of classroom data where students engage with the sensor technology to ask questions about and design displays of the collected data. Students first generate questions about how data data displays work and then proceed through a set of programming exercises to help them understand how to collect and display data collected from their classrooms by building their own mini data displays. Throughout the unit students draw and update their hand drawn models representing their current understanding of how the data displays work. The sensor immersion unit was implemented by ten middle school science teachers during the 2019/2020 school year. Student drawn models of the classroom data displays from four of these teachers were analyzed to examine students’ understandings in four areas: func- tion of sensor components, process models of data flow, design of data displays, and control of the display. Students showed the best understanding when describing sensor components. Students exhibited greater confusion when describing the process of how data streams moved through displays and how programming controlled the data displays. 
    more » « less
  2. This article describes a professional development (PD) model, the CT-Integration Cycle, that supports teachers in learning to integrate computational thinking (CT) and computer science principles into their middle school science and STEM instruction. The PD model outlined here includes collaborative design (codesign; Voogt et al., 2015) of curricular units aligned with the Next Generation Science Standards (NGSS) that use programmable sensors. Specifically, teachers can develop or modify curricular materials to ensure a focus on coherent, student-driven instruction through the investigation of scientific phenomena that are relevant to students and integrate CT and sensor technology. Teachers can implement these storylines and collaboratively reflect on their instructional practices and student learning. Throughout this process, teachers may develop expertise in CT-integrated science instruction as they plan and use instructional practices aligned with the NGSS and foreground CT. This paper describes an examination of a group of five middle school teachers’ experiences during one iteration of the CT-Integration Cycle, including their learning, planning, implementation, and reflection on a unit they codesigned. Throughout their participation in the PD, the teachers expanded their capacity to engage deeply with CT practices and thoughtfully facilitated a CT-integrated unit with their students. 
    more » « less
  3. null (Ed.)
    This article describes a professional development (PD) model, the CT- Integration Cycle, that supports teachers in learning to integrate computational thinking (CT) and computer science principles into their middle school science and STEM instruction. The PD model outlined here includes collaborative design (codesign; Voogt et al., 2015) of curricular units aligned with the Next Generation Science Standards (NGSS) that use programmable sensors. Specifically, teachers can develop or modify curricular materials to ensure a focus on coherent, student-driven instruction through the investigation of scientific phenomena that are relevant to students and integrate CT and sensor technology. Teachers can implement these storylines and collaboratively reflect on their instructional practices and student learning. Throughout this process, teachers may develop expertise in CT-integrated science instruction as they plan and use instructional practices aligned with the NGSS and foreground CT. This paper describes an examination of a group of five middle school teachers’ experiences during one iteration of the CT- Integration Cycle, including their learning, planning, implementation, and reflection on a unit they codesigned. Throughout their participation in the PD, the teachers expanded their capacity to engage deeply with CT practices and thoughtfully facilitated a CT-integrated unit with their students. 
    more » « less
  4. null (Ed.)
    This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels. Although the classroom orchestration of the particular learning design was customised for specific audiences and contexts, findings from this study suggest that the core components of the learning design, such as content, assessment, and pedagogy, and their alignment among them, resulted in students’ learning. Specifically, results from a pre-post science assessment suggest that the three student groups arrived at similar understanding post-intervention levels, along with a significant aggregate growth in their scientific understanding. Regarding design performance, students in different groups demonstrated different levels of success in meeting design constraints. The findings also suggest that students’ success rate in meeting the design constraints directly influenced their final design performance, where middle-school students had better performance than students in the other groups. That is, across the board, students increased their conceptual understanding of heat transfer, Earth, and solar science and were able to produce feasible designs. Implications of the study include how learning experiences with engineering and science simulations should be designed so that teachers can adopt and adapt materials for their specific audiences, contexts, and settings. 
    more » « less
  5. This middle school STEM unit called Energy in Your Environment (EYE) was co-created by middle school science teachers, architectural studies, and science education faculty with the goal of improving students’ energy literacy and energy conservation knowledge. The unit fosters place-based education by using the school building to enhance systems thinking about energy consumption and flow between the building and surrounding environment. Within the unit, students explore the role of electrical, thermal, and light energy in their school building and consider how building features (such as windows, lighting, and insulation) impact energy flow and conservation. Students use their energy systems knowledge to design and build a desk-top one-room energy efficient building using simple materials to explain how and why their design impacts energy flow. Five teachers implemented the unit with over 200 students. The growth from pre- to post-measurements was statistically significant for students energy flow knowledge and tracing the path of energy (F(1, 209) = 3118.3, p = 0.001). In our presentation, we will provide an overview of the unit, our student learning data, and result summary. 
    more » « less