skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Classroom orchestration of computer simulations for science and engineering learning: a multiple-case study approach
This multiple case study focused on the implementation of a computer-aided design (CAD) simulation to help students engage in engineering design to learn science concepts. Our findings describe three case studies that adopted the same learning design and adapted it to three different populations, settings, and classroom contexts: at the middle-school, high-school, and pre-service teaching levels. Although the classroom orchestration of the particular learning design was customised for specific audiences and contexts, findings from this study suggest that the core components of the learning design, such as content, assessment, and pedagogy, and their alignment among them, resulted in students’ learning. Specifically, results from a pre-post science assessment suggest that the three student groups arrived at similar understanding post-intervention levels, along with a significant aggregate growth in their scientific understanding. Regarding design performance, students in different groups demonstrated different levels of success in meeting design constraints. The findings also suggest that students’ success rate in meeting the design constraints directly influenced their final design performance, where middle-school students had better performance than students in the other groups. That is, across the board, students increased their conceptual understanding of heat transfer, Earth, and solar science and were able to produce feasible designs. Implications of the study include how learning experiences with engineering and science simulations should be designed so that teachers can adopt and adapt materials for their specific audiences, contexts, and settings.  more » « less
Award ID(s):
2105695
PAR ID:
10222580
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
International Journal of Science Education
ISSN:
0950-0693
Page Range / eLocation ID:
1 to 32
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper examines the use of collaborative curriculum design (co-design) as a strategy for supporting teacher professional learning and the implementation of an inclusive middle school computer science and digital literacy (CSDL) curriculum in three urban school districts. The curriculum is focused on students developing mobile apps that provide social and community good. The second year of the project has been dedicated to developing and piloting curriculum resources that support remote learning and culturally relevant pedagogy while the partner districts switched to remote and hybrid instructions. This study explores teachers’ professional learning experiences in the collaborative design of curriculum materials and piloting the curriculum at their own classrooms. The paper includes analysis of three data sets: (1) co-design meeting notes and teacher reflections; (2) semi-structured interviews with teachers who co-designed and piloted the curriculum; (3) student pre- and post-survey responses on their attitude and interest in learning CSDL. Preliminary results indicate that the co-design approach supplemented with one-on-one coaching has not only facilitated the curriculum development process but also fostered professional learning and collective capacity building for implementing the project curriculum in the partner districts. Findings from student surveys show that students perceived their understanding of, and interest in computer science and creating apps were slightly improved, regardless of gender. 
    more » « less
  2. null (Ed.)
    Computer science educators often use multiple creative computing platforms to motivate and support students learning computer science. Arguably, we understand little about the complementary ways in which the various platforms build on students' prior experiences. This study compares two CS+music platforms used by middle school students in a summer camp to understand the unique affordances of each platform at activating and building upon prior music and computing experiences. We assess interest formation through pre and post student surveys and via interviews on the final day of the camp. The findings suggest that using different approaches to CS+music platform design may help engage students with different levels of prior music and coding experience. 
    more » « less
  3. Making sense of what to do about the many daunting socio-environmental issues that we face will require intercultural understanding, openness to learning, and a capacity to draw on the strengths of multiple perspectives and to recognize limitations of dominant perspectives such as Eurocentric science. Navigating multiple perspectives in the school science classroom can be particularly treacherous for Indigenous students, whose cultural worldviews have often been excluded or denigrated in Eurocentric educational contexts. We present findings from a partnership project that is designing, implementing, studying, and refining instructional experiences for middle school students from significantly/predominantly Indigenous communities in Alaska and Hawai’i. This paper describes our efforts to understand project partners’ standpoints, acknowledging that in designing and implementing multi-perspective middle school science instruction, it will be critical to understand the multiple perspectives that we ourselves bring to the work. We present and discuss the views that project partners (including teachers) have shared concerning science, science education, multiple perspectives, and Indigenous cultural integrity and potential consequentiality for the project’s collaborative work. Five prominent themes relate to (1) the challenge of defining Indigenous and Eurocentric science for application in an instructional design context, (2) relationships with place, (3) centrality of language, (4) scaffolding and understanding learning through a multi-perspective lens, and (5) constraints associated with Eurocentric classroom and science contexts. 
    more » « less
  4. Data science has increasingly integrated sociocritical theories and approaches, helping youth to not only learn data science but also relate data to their everyday and sociohistorical lives. Our project, Writing Data Stories, furthers these efforts by exploring sociocritical data literacies in a large-scale classroom enactment. We examine trends in middle school science student groups’ (n=11) data participation and sociocritical participation, showing how these forms of participation ebb and flow across a 21-day unit. We then present focal group case studies to further unpack how participation shifted over time and suggest what factors contributed to these shifts. We found that data participation was affected by the tools at students’ disposal, and sociocritical participation was shaped by the questions groups asked of each other and the data. These findings suggest that special attention to tools and guiding questions is critical when designing for sociocritical data literacy in middle school science contexts. 
    more » « less
  5. In response to reform efforts to center students’ interest and identity in the context of assessment, we pilot tested a set of three-dimensional, phenomenon-driven assessment tasks and asked students to respond to additional items that prompted them to reflect on their experience with the tasks. Using a qualitative approach, we analyzed written responses from 502 middle school students across the United States. Through inductive and deductive coding, we developed a comprehensive framework that captures students' experiences across five dimensions: cognitive engagement, affective engagement, relevance to students’ lives, beyond-classroom connections, and assessment design and features. By exploring these dimensions, the framework aims to provide a comprehensive lens for understanding how students experience science assessments, revealing key insights into the factors that influence their engagement and learning. Ultimately, this framework can serve as a practical tool for educators and researchers to analyze and improve science assessments by centering students' voices, thereby fostering deeper learning, promoting student agency, and supporting all learners. 
    more » « less