skip to main content


Title: Human Modeling for Efficient Predictive Collision Detection
As demands on manufacturing rapidly evolve, flexible manufacturing is becoming more essential for acquiring the necessary productivity to remain competitive. An innovative approach to flexible manufacturing is the introduction of fenceless robotic manufacturing cells to acquire and leverage greater human-robot collaboration (HRC). This involves operations in which a human and a robot share a space, complete tasks together, and interact with each other. Such operations, however, pose serious safety concerns. Before HRC can become a viable possibility, robots must be capable of safely operating within and responding to events in dynamic environments. Furthermore, the robot must be able to do this quickly during online operation. This paper outlines an algorithm for predictive collision detection. This algorithm gives the robot the ability to look ahead at its trajectory, and the trajectories of other bodies in its environment and predict potential collisions. The algorithm approximates a continuous swept volume of any articulated body along its trajectory by taking only a few time sequential samples of the predicted orientations of the body and creating surfaces that patch the orientations together with Coons patches. Run time data collected on this algorithm suggest that the algorithm can accurately predict future collisions in under 30 ms.  more » « less
Award ID(s):
1830383
NSF-PAR ID:
10291770
Author(s) / Creator(s):
Date Published:
Journal Name:
UF Journal of Undergraduate Research
Volume:
22
ISSN:
2638-0668
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Robots and humans closely working together within dynamic environments must be able to continuously look ahead and identify potential collisions within their ever-changing environment. To enable the robot to act upon such situational awareness, its controller requires an iterative collision detection capability that will allow for computationally efficient Proactive Adaptive Collaboration Intelligence (PACI) to ensure safe interactions. In this paper, an algorithm is developed to evaluate a robot’s trajectory, evaluate the dynamic environment that the robot operates in, and predict collisions between the robot and dynamic obstacles in its environment. This algorithm takes as input the joint motion data of predefined robot execution plans and constructs a sweep of the robot’s instantaneous poses throughout time. The sweep models the trajectory as a point cloud containing all locations occupied by the robot and the time at which they will be occupied. To reduce the computational burden, Coons patches are leveraged to approximate the robot’s instantaneous poses. In parallel, the algorithm creates a similar sweep to model any human(s) and other obstacles being tracked in the operating environment. Overlaying temporal mapping of the sweeps reveals anticipated collisions that will occur if the robot-human do not proactively modify their motion. The algorithm is designed to feed into a segmentation and switching logic framework and provide real-time proactive-n-reactive behavior for different levels of human-robot interactions, while maintaining safety and production efficiency. To evaluate the predictive collision detection approach, multiple test cases are presented to quantify the computational speed and accuracy in predicting collisions. 
    more » « less
  2. Human-robot collaboration (HRC) has become an integral element of many industries, including manufacturing. A fundamental requirement for safe HRC is to understand and predict human intentions and trajectories, especially when humans and robots operate in close proximity. However, predicting both human intention and trajectory components simultaneously remains a research gap. In this paper, we have developed a multi-task learning (MTL) framework designed for HRC, which processes motion data from both human and robot trajectories. The first task predicts human trajectories, focusing on reconstructing the motion sequences. The second task employs supervised learning, specifically a Support Vector Machine (SVM), to predict human intention based on the latent representation. In addition, an unsupervised learning method, Hidden Markov Model (HMM), is utilized for human intention prediction that offers a different approach to decoding the latent features. The proposed framework uses MTL to understand human behavior in complex manufacturing environments. The novelty of the work includes the use of a latent representation to capture temporal dynamics in human motion sequences and a comparative analysis of various encoder architectures. We validate our framework through a case study focused on a HRC disassembly desktop task. The findings confirm the system's capability to accurately predict both human intentions and trajectories. 
    more » « less
  3. This paper presents a comprehensive disassembly sequence planning (DSP) algorithm in the human–robot collaboration (HRC) setting with consideration of several important factors including limited resources and human workers’ safety. The proposed DSP algorithm is capable of planning and distributing disassembly tasks among the human operator, the robot, and HRC, aiming to minimize the total disassembly time without violating resources and safety constraints. Regarding the resource constraints, we consider one human operator and one robot, and a limited quantity of disassembly tools. Regarding the safety constraints, we consider avoiding potential human injuries from to-be-disassembled components and possible collisions between the human operator and the robot due to the short distance between disassembly tasks. In addition, the transitions for tool changing, the moving between disassembly modules, and the precedence constraint of components to be disassembled are also considered and formulated as constraints in the problem formulation. Both numerical and experimental studies on the disassembly of a used hard disk drive (HDD) have been conducted to validate the proposed algorithm. 
    more » « less
  4. The emergence and recent development of collaborative robots have introduced a safer and more efficient human–robot collaboration (HRC) manufacturing environment. Since the release of COBOTs, a great amount of research efforts have been focused on improving robot working efficiency, user safety, human intention detection, etc., while one significant factor—human comfort—has been frequently ignored. The comfort factor is critical to COBOT users due to its great impact on user acceptance. In previous studies, there is a lack of a mathematical-model-based approach to quantitatively describe and predict human comfort in HRC scenarios. Also, few studies have discussed the cases when multiple comfort factors take effect simultaneously. In this study, a multi-linear-regression-based general human comfort prediction model is proposed under human–robot collaboration scenarios, which is able to accurately predict the comfort levels of humans in multi-factor situations. The proposed method in this paper tackled these two gaps at the same time and also demonstrated the effectiveness of the approach with its high prediction accuracy. The overall average accuracy among all participants is 81.33%, while the overall maximum value is 88.94%, and the overall minimum value is 72.53%. The model uses subjective comfort rating feedback from human subjects as training and testing data. Experiments have been implemented, and the final results proved the effectiveness of the proposed approach in identifying human comfort levels in HRC.

     
    more » « less
  5. In this paper, an adjustable autonomy framework is proposed for Human-Robot Collaboration (HRC) in which a robot uses a reinforcement learning mechanism guided by a human operator's rewards in an initially unknown workspace. Within the proposed framework, the robot can adjust its autonomy level in an HRC setting that is represented by a Markov Decision Process. A novel Q-learning mechanism with an integrated greedy approach is implemented for robot learning to capture the correct actions and the robot's mistakes for adjusting its autonomy level. The proposed HRC framework can adapt to changes in the workspace, and can adjust the autonomy level, provided consistent human operator's reward. The developed algorithm is applied to a realistic HRC setting, involving a Baxter humanoid robot. The experimental results confirm the capability of the developed framework to successfully adjust the robot's autonomy level in response to changes in the human operator's commands or the workspace. 
    more » « less