skip to main content


Title: Human-Robot Collaboration: A Predictive Collision Detection Approach for Operation Within Dynamic Environments
Robots and humans closely working together within dynamic environments must be able to continuously look ahead and identify potential collisions within their ever-changing environment. To enable the robot to act upon such situational awareness, its controller requires an iterative collision detection capability that will allow for computationally efficient Proactive Adaptive Collaboration Intelligence (PACI) to ensure safe interactions. In this paper, an algorithm is developed to evaluate a robot’s trajectory, evaluate the dynamic environment that the robot operates in, and predict collisions between the robot and dynamic obstacles in its environment. This algorithm takes as input the joint motion data of predefined robot execution plans and constructs a sweep of the robot’s instantaneous poses throughout time. The sweep models the trajectory as a point cloud containing all locations occupied by the robot and the time at which they will be occupied. To reduce the computational burden, Coons patches are leveraged to approximate the robot’s instantaneous poses. In parallel, the algorithm creates a similar sweep to model any human(s) and other obstacles being tracked in the operating environment. Overlaying temporal mapping of the sweeps reveals anticipated collisions that will occur if the robot-human do not proactively modify their motion. The algorithm is designed to feed into a segmentation and switching logic framework and provide real-time proactive-n-reactive behavior for different levels of human-robot interactions, while maintaining safety and production efficiency. To evaluate the predictive collision detection approach, multiple test cases are presented to quantify the computational speed and accuracy in predicting collisions.  more » « less
Award ID(s):
1830383
NSF-PAR ID:
10189189
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASME International Symposium on Flexible Automation Conference
Page Range / eLocation ID:
1-8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Industry 4.0 projects ubiquitous collaborative robots in smart factories of the future, particularly in assembly and material handling. To ensure efficient and safe human-robot collaborative interactions, this paper presents a novel algorithm for estimating Risk of Passage (ROP) a robot incurs by passing between dynamic obstacles (humans, moving equipment, etc.). This paper posits that robot trajectory durations will be shorter and safer if the robot can react proactively to predicted collision between a robot and human worker before it occurs, compared to reacting when it is imminent. I.e., if the risk that obstacles may prohibit robot passage at a future time in the robot’s trajectory is greater than a user defined risk limit, then an Obstacle Pair Volume (OPV), encompassing the obstacles at that time, is added to the planning scene. Results found from simulation show that an ROP algorithm can be trained in ∼120 workcell cycles. Further, it is demonstrated that when a trained ROP algorithm introduces an OPV, trajectory durations are shorter compared to those avoiding obstacles without the introduction of an OPV. The use of ROP estimation with addition of OPV allows workcells to operate proactively smoother with shorter cycle times in the presence of unforeseen obstacles. 
    more » « less
  2. This paper addresses human-robot collaboration (HRC) challenges of integrating predictions of human activity to provide a proactive-n-reactive response capability for the robot. Prior works that consider current or predicted human poses as static obstacles are too nearsighted or too conservative in planning, potentially causing delayed robot paths. Alternatively, time-varying prediction of human poses would enable robot paths that avoid anticipated human poses, synchronized dynamically in time and space. Herein, a proactive path planning method, denoted STAP, is presented that uses spatiotemporal human occupancy maps to find robot trajectories that anticipate human movements, allowing robot passage without stopping. In addition, STAP anticipates delays from robot speed restrictions required by ISO/TS 15066 speed and separation monitoring (SSM). STAP also proposes a sampling-based planning algorithm based on RRT* to solve the spatio-temporal motion planning problem and find paths of minimum expected duration. Experimental results show STAP generates paths of shorter duration and greater average robot-human separation distance throughout tasks. Additionally, STAP more accurately estimates robot trajectory durations in HRC, which are useful in arriving at proactive-n-reactive robot sequencing. 
    more » « less
  3. null (Ed.)
    As demands on manufacturing rapidly evolve, flexible manufacturing is becoming more essential for acquiring the necessary productivity to remain competitive. An innovative approach to flexible manufacturing is the introduction of fenceless robotic manufacturing cells to acquire and leverage greater human-robot collaboration (HRC). This involves operations in which a human and a robot share a space, complete tasks together, and interact with each other. Such operations, however, pose serious safety concerns. Before HRC can become a viable possibility, robots must be capable of safely operating within and responding to events in dynamic environments. Furthermore, the robot must be able to do this quickly during online operation. This paper outlines an algorithm for predictive collision detection. This algorithm gives the robot the ability to look ahead at its trajectory, and the trajectories of other bodies in its environment and predict potential collisions. The algorithm approximates a continuous swept volume of any articulated body along its trajectory by taking only a few time sequential samples of the predicted orientations of the body and creating surfaces that patch the orientations together with Coons patches. Run time data collected on this algorithm suggest that the algorithm can accurately predict future collisions in under 30 ms. 
    more » « less
  4. Abstract

    Trajectory planning for multiple robots in shared environments is a challenging problem especially when there is limited communication available or no central entity. In this article, we present Real-time planning using Linear Spatial Separations, or RLSS: a real-time decentralized trajectory planning algorithm for cooperative multi-robot teams in static environments. The algorithm requires relatively few robot capabilities, namely sensing the positions of robots and obstacles without higher-order derivatives and the ability of distinguishing robots from obstacles. There is no communication requirement and the robots’ dynamic limits are taken into account. RLSS generates and solves convex quadratic optimization problems that are kinematically feasible and guarantees collision avoidance if the resulting problems are feasible. We demonstrate the algorithm’s performance in real-time in simulations and on physical robots. We compare RLSS to two state-of-the-art planners and show empirically that RLSS does avoid deadlocks and collisions in forest-like and maze-like environments, significantly improving prior work, which result in collisions and deadlocks in such environments.

     
    more » « less
  5. This paper develops a predictive collision detection algorithm for enhancing safety while respecting productivity in a Human Robot Collaborative (HRC) setting that operates on outputs from a Computer Vision (CV) environmental monitor. This prediction can trigger reactive and proactive robot action. The algorithm is designed to address two key challenges: 1) outputs from CV techniques are often highly noisy and incomplete due to occlusions and other factors, and 2) human tracking CV approaches typically provide a minimal set of points on the human. This noisy set of points must be augmented to define a high-fidelity model of the human’s predicted spatial and temporal occupancy. A filter is applied to decrease sensitivity of the algorithm to errors in the CV predictions. Kinematics of the human are leveraged to infer a full model of the human from a set of, at most, 18 points, and transform them into a point cloud occupying the swept volume of the human’s motion. This form can then quickly be compared with a compatible robot model for collision detection. Timed tests show that creation of human and robot models, and the subsequent collision check occurs in less than 30 ms on average, making this algorithm real-time capable. 
    more » « less