skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gulf of Alaska ice-marginal lake area change over the Landsat record and potential physical controls
Abstract. Lakes in contact with glacier margins can impact glacierevolution as well as the downstream biophysical systems, flood hazard, andwater resources. Recent work suggests positive feedbacks between glacierwastage and ice-marginal lake evolution, although precise physical controlsare not well understood. Here, we quantify ice-marginal lake area change inunderstudied northwestern North America from 1984–2018 and investigateclimatic, topographic, and glaciological influences on lake area change. Wedelineate time series of sampled lake perimeters (n=107 lakes) and findthat regional lake area has increased 58 % in aggregate, with individualproglacial lakes growing by 1.28 km2 (125 %) and ice-dammed lakesshrinking by 0.04 km2 (−15 %) on average. A statisticalinvestigation of climate reanalysis data suggests that changes in summertemperature and winter precipitation exert minimal direct influence on lakearea change. Utilizing existing datasets of observed and modeled glacialcharacteristics, we find that large, wide glaciers with thick lake-adjacentice are associated with the fastest rate of lake area change, particularlywhere they have been undergoing rapid mass loss in recent times. We observe adichotomy in which large, low-elevation coastal proglacial lakes havechanged most in absolute terms, while small, interior lakes at highelevation have changed most in relative terms. Generally, the fastest-changinglakes have not experienced the most dramatic temperature or precipitationchange, nor are they associated with the highest rates of glacier mass loss.Our work suggests that, while climatic and glaciological factors must playsome role in determining lake area change, the influence of a lake'sspecific geometry and topographic setting overrides these external controls.  more » « less
Award ID(s):
1821002
PAR ID:
10291796
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Cryosphere
Volume:
15
Issue:
7
ISSN:
1994-0424
Page Range / eLocation ID:
3255 to 3278
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lakes in direct contact with glaciers (ice-marginal lakes) are found across alpine and polar landscapes. Many studies characterize ice-marginal lake behavior over multi-decadal timescales using either episodic ~annual images or multi-year mosaics. However, ice-marginal lakes are dynamic features that experience short-term (i.e., day to year) variations in area and volume superimposed on longer-term trends. Through aliasing, this short-term variability could result in erroneous long-term estimates of lake change. We develop and implement an automated workflow in Google Earth Engine to quantify monthly behavior of ice-marginal lakes between 2013 and 2019 across south-central Alaska using Landsat 8 imagery. We employ a supervised Mahalanobis minimum-distance land cover classifier incorporating three datasets found to maximize classifier performance: shortwave infrared imagery, the normalized difference vegetation index (NDVI), and spatially filtered panchromatic reflectance. We observe physically-meaningful ice-marginal lake area variance on sub-annual timescales, with the median area fluctuation of an ice-marginal lake found to be 10.8% of its average area. The median signal (slow lake growth) to noise (physically-meaningful short-term area variability) ratio is 1.5:1, indicating that short-term variability is responsible for ~33% of observed area change in the median ice-marginal lake. The magnitude of short-term area variability is similar for ice-marginal and nonglacial lakes, suggesting that the cause of observed variations is not of glacial origin. These data provide a new context for interpreting behaviors observed in multi-decadal studies and encourage attention to sub-annual behavior of ice-marginal lakes even in long-term studies. 
    more » « less
  2. Abstract. Greenland Ice Sheet (GrIS) outlet glaciers are currently losing mass, leading to sea level rise. Reconstructions of past outlet glacier behavior through the Holocene help us better understand how they respond to climate change. Kiattuut Sermiat, a southern Greenland outlet glacier near Narsarsuaq, is known to have experienced an unusually large Late Holoceneadvance that culminated at ∼1600 cal yr BP and exceeded theglacier's Little Ice Age extent. We report sedimentary records from twolakes at slightly different elevations in an upland valley adjacent toKiattuut Sermiat. These reveal when the outlet glacier's surface elevationwas higher than during the Little Ice Age and constrain the associatedoutlet glacier surface elevation. We use bulk sediment geochemistry,magnetic susceptibility, color, texture, and the presence of aquatic plantmacrofossils to distinguish between till, glaciolacustrine sediments, andorganic lake sediments. Our 14C results above basal till recordingregional deglaciation skew slightly old due to a reservoir effect but aregenerally consistent with regional deglaciation occurring ∼ 11 000 cal yr BP. Neoglacial advance of Kiattuut Sermiat is recorded by deposition of glaciolacustrine sediments in the lower-elevation lake, which we infer was subsumed by an ice-dammed lake that formed along the glacier's margin just after ∼ 3900 cal yr BP. This timing is consistent with several other glacial records in Greenland showing neoglacial cooling driving advance between ∼ 4500–3000 cal yr BP. Given that glaciolacustrine sediments were deposited only in the lower-elevation lake, combined with glacial geomorphological evidence in the valley containing these lakes, we estimate the former ice margin's elevation to have been ∼ 670 m a.s.l., compared with ∼ 420 m a.s.l. today. The ice-dammed lake persisted until the glacier surface fell below this elevation at ∼ 1600 cal yr BP. The retreat timing contrasts with overall evidence for cooling and glacier advance in the region at that time, so we infer that Kiattuut Sermiat's retreat may have resulted from reduced snowfall amounts and/or local glaciological complexity. High sensitivity to precipitation changes could also explain the relatively limited Little Ice Age advance of Kiattuut Sermiat compared with the earlier neoglacial advance. 
    more » « less
  3. The glaciers of the Cordillera Blanca, Peru, are rapidly retreating and thinning as a result of climate change, altering the timing, quantity and quality of water available to downstream users. Furthermore, increases in the number and size of proglacial lakes associated with these melting glaciers is increasing potential exposure to glacier lake outburst floods (GLOFs). Understanding how these glaciers are changing and their connection to proglacial lake systems is thus of critical importance. Most satellite data are too coarse for studying small mountain glaciers and are often affected by cloud cover, while traditional airborne photogrammetry and lidar are costly. Recent developments have made unmanned aerial vehicles (UAVs) a viable and potentially transformative method for studying glacier change at high spatial resolution, on demand and at relatively low cost.Using a custom designed hexacopter built for high-altitude (4000–6000 m a. s. l. ) operation, we completed repeat aerial surveys (2014 and 2015) of the debris-covered Llaca Glacier tongue and proglacial lake system. High-resolution orthomosaics (5 cm) and digital elevation models (DEMs) (10 cm) were produced and their accuracy assessed. Analysis of these datasets reveals highly heterogeneous patterns of glacier change. The most rapid areas of ice loss were associated with exposed ice cliffs and meltwater ponds on the glacier surface. Considerable subsidence and low surface velocities were also measured on the sediments within the pro-glacial lake, indicating the presence of extensive regions of buried ice and continued connection to the glacier tongue. Only limited horizontal retreat of the glacier tongue was observed, indicating that measurements of changes in aerial extent alone are inadequate for monitoring changes in glacier ice quantity. 
    more » « less
  4. Abstract Arctic lakes located in permafrost regions are susceptible to catastrophic drainage. In this study, we reconstructed historical lake drainage events on the western Arctic Coastal Plain of Alaska between 1955 and 2017 using USGS topographic maps, historical aerial photography (1955), and Landsat Imagery (ca. 1975, ca. 2000, and annually since 2000). We identified 98 lakes larger than 10 ha that partially (>25% of area) or completely drained during the 62‐year period. Decadal‐scale lake drainage rates progressively declined from 2.0 lakes/yr (1955–1975), to 1.6 lakes/yr (1975–2000), and to 1.2 lakes/yr (2000–2017) in the ~30,000‐km2study area. Detailed Landsat trend analysis between 2000 and 2017 identified two years, 2004 and 2006, with a cluster (five or more) of lake drainages probably associated with bank overtopping or headward erosion. To identify future potential lake drainages, we combined the historical lake drainage observations with a geospatial dataset describing lake elevation, hydrologic connectivity, and adjacent lake margin topographic gradients developed with a 5‐m‐resolution digital surface model. We identified ~1900 lakes likely to be prone to drainage in the future. Of the 20 lakes that drained in the most recent study period, 85% were identified in this future lake drainage potential dataset. Our assessment of historical lake drainage magnitude, mechanisms and pathways, and identification of potential future lake drainages provides insights into how arctic lowland landscapes may change and evolve in the coming decades to centuries. 
    more » « less
  5. Abstract As ice sheets load Earth's surface, they produce ice‐marginal depressions which, when filled with meltwater, become proglacial lakes. We include self‐consistently evolving proglacial lakes in a glacial isostatic adjustment (GIA) model and apply it to the Laurentide ice sheet over the last glacial cycle. We find that the locations of modeled lakes and the timing of their disappearance is consistent with the geological record. Lake loads can deflect topography by >10 m, and volumes collectively approach 30–45 cm global mean sea‐level equivalent. GIA increases deglaciation‐phase lake volume up to five‐fold and average along‐ice‐margin depth ≤90 m compared to glaciation‐phase ice volume analogs—differences driven by changes in the position and size of the peripheral bulge. Since ice‐marginal lake depth affects grounding‐line outflow, GIA‐modulated proglacial lake depths could affect ice‐sheet mass loss. Indeed, we find that Laurentide ice‐margin retreat rate sometimes correlates with proglacial lake presence, indicating that proglacial lakes aid glacial collapse. 
    more » « less