skip to main content


Title: Quantifying microbial control of soil organic matter dynamics at macrosystem scales
Soil organic matter (SOM) stocks, decom- position and persistence are largely the product of controls that act locally. Yet the controls are shaped and interact at multiple spatiotemporal scales, from which macrosystem patterns in SOM emerge. Theory on SOM turnover recognizes the resulting spatial and temporal conditionality in the effect sizes of controls that play out across macrosystems, and couples them through evolutionary and community assembly pro- cesses. For example, climate history shapes plant functional traits, which in turn interact with contem- porary climate to influence SOM dynamics. Selection and assembly also shape the functional traits of soil decomposer communities, but it is less clear how in turn these traits influence temporal macrosystem patterns in SOM turnover. Here, we review evidence that establishes the expectation that selection and assembly should generate decomposer communities across macrosystems that have distinct functional effects on SOM dynamics. Representation of this knowledge in soil biogeochemical models affects the magnitude and direction of projected SOM responses under global change. Yet there is high uncertainty and low confidence in these projections. To address these issues, we make the case that a coordinated set of empirical practices are required which necessitate (1) greater use of statistical approaches in biogeochem- istry that are suited to causative inference; (2) long- term, macrosystem-scale, observational and experi- mental networks to reveal conditionality in effect sizes, and embedded correlation, in controls on SOM turnover; and (3) use of multiple measurement grains to capture local- and macroscale variation in controls and outcomes, to avoid obscuring causative understanding through data aggregation. When employed together, along with process-based models to synthesize knowledge and guide further empirical work, we believe these practices will rapidly advance understanding of microbial controls on SOM and improve carbon cycle projections that guide policies on climate adaptation and mitigation.  more » « less
Award ID(s):
1926482 1926413
NSF-PAR ID:
10291847
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Biogeochemistry
ISSN:
0168-2563
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Whether global change will drive changing forests from net carbon (C) sinks to sources relates to how quickly deadwood decomposes. Because complete wood mineralization takes years, most experiments focus on how traits, environments and decomposer communities interact as wood decay begins. Few experiments last long enough to test whether drivers change with decay rates through time, with unknown consequences for scaling short‐term results up to long‐term forest ecosystem projections. Using a 7 year experiment that captured complete mineralization among 21 temperate tree species, we demonstrate that trait effects fade with advancing decay. However, wood density and vessel diameter, which may influence permeability, control how decay rates change through time. Denser wood loses mass more slowly at first but more quickly with advancing decay, which resolves ambiguity about the after‐life consequences of this key plant functional trait by demonstrating that its effect on decay depends on experiment duration and sampling frequency. Only long‐term data and a time‐varying model yielded accurate predictions of both mass loss in a concurrent experiment and naturally recruited deadwood structure in a 32‐year‐old forest plot. Given the importance of forests in the carbon cycle, and the pivotal role for wood decay, accurate ecosystem projections are critical and they require experiments that go beyond enumerating potential mechanisms by identifying the temporal scale for their effects.

     
    more » « less
  2. Druzhinina, Irina S. (Ed.)
    ABSTRACT Trees associating with different mycorrhizas often differ in their effects on litter decomposition, nutrient cycling, soil organic matter (SOM) dynamics, and plant-soil interactions. For example, due to differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree leaf and root traits, ECM-associated soil has lower rates of C and N cycling and lower N availability than AM-associated soil. These observations suggest that many groups of nonmycorrhizal fungi should be affected by the mycorrhizal associations of dominant trees through controls on nutrient availability. To test this overarching hypothesis, we explored the influence of predominant forest mycorrhizal type and mineral N availability on soil fungal communities using next-generation amplicon sequencing. Soils from four temperate hardwood forests in southern Indiana, United States, were studied; three forests formed a natural gradient of mycorrhizal dominance (100% AM tree basal area to 100% ECM basal area), while the fourth forest contained a factorial experiment testing long-term N addition in both dominant mycorrhizal types. We found that overall fungal diversity, as well as the diversity and relative abundance of plant pathogenic and saprotrophic fungi, increased with greater AM tree dominance. Additionally, tree community mycorrhizal associations explained more variation in fungal community composition than abiotic variables, including soil depth, SOM content, nitrification rate, and mineral N availability. Our findings suggest that tree mycorrhizal associations may be good predictors of the diversity, composition, and functional potential of soil fungal communities in temperate hardwood forests. These observations help explain differing biogeochemistry and community dynamics found in forest stands dominated by differing mycorrhizal types. IMPORTANCE Our work explores how differing mycorrhizal associations of temperate hardwood trees (i.e., arbuscular [AM] versus ectomycorrhizal [ECM] associations) affect soil fungal communities by altering the diversity and relative abundance of saprotrophic and plant-pathogenic fungi along natural gradients of mycorrhizal dominance. Because temperate hardwood forests are predicted to become more AM dominant with climate change, studies examining soil communities along mycorrhizal gradients are necessary to understand how these global changes may alter future soil fungal communities and their functional potential. Ours, along with other recent studies, identify possible global trends in the frequency of specific fungal functional groups responsible for nutrient cycling and plant-soil interactions as they relate to mycorrhizal associations. 
    more » « less
  3. Abstract

    The spatial and temporal linkages between turnover of soil microbial communities and their associated functions remain largely unexplored in terrestrial ecosystems. Yet defining these relationships and how they vary across ecosystems and microbial lineages is key to incorporating microbial communities into ecological forecasts and ecosystem models. To define linkages between turnover of soil bacterial and fungal communities and their function we sampled fungal and bacterial composition, abundance, and enzyme activities across a 3‐ha area of wet tropical primary forest over 2 yr. We show that fungal and bacterial communities both exhibited temporal turnover, but turnover of both groups was much lower than in temperate ecosystems. Turnover over time was driven by gain and loss of microbial taxa and not changes in abundance of individual species present in multiple samples. Only fungi varied over space with idiosyncratic variation that did not increase linearly with distance among sampling locations. Only phosphorus‐acquiring enzyme activities were linked to shifts in septate, decomposer fungal abundance; no enzymes were affected by composition or diversity of fungi or bacteria. Although temporal and spatial variation in composition was appreciable, because turnover of microbial communities did not alter the functional repertoire of decomposing enzymes, functional redundancy among taxa may be high in this ecosystem. Slow temporal turnover of tropical soil microbial communities and large functional redundancy suggests that shifts in abundance of particular functional groups may capture ecosystem function more accurately than composition in these heterogeneous ecosystems.

     
    more » « less
  4. Abstract

    Large-scale environmental sequencing efforts have transformed our understanding of the spatial controls over soil microbial community composition and turnover. Yet, our knowledge of temporal controls is comparatively limited. This is a major uncertainty in microbial ecology, as there is increasing evidence that microbial community composition is important for predicting microbial community function in the future. Here, we use continental- and global-scale soil fungal community surveys, focused within northern temperate latitudes, to estimate the relative contribution of time and space to soil fungal community turnover. We detected large intra-annual temporal differences in soil fungal community similarity, where fungal communities differed most among seasons, equivalent to the community turnover observed over thousands of kilometers in space. inter-annual community turnover was comparatively smaller than intra-annual turnover. Certain environmental covariates, particularly climate covariates, explained some spatial–temporal effects, though it is unlikely the same mechanisms drive spatial vs. temporal turnover. However, these commonly measured environmental covariates could not fully explain relationships between space, time and community composition. These baseline estimates of fungal community turnover in time provide a starting point to estimate the potential duration of legacies in microbial community composition and function.

     
    more » « less
  5. Abstract

    Temporal variation is a powerful source of selection on life history strategies and functional traits in natural populations. Theory predicts that the rate and predictability of fluctuations should favor distinct strategies, ranging from phenotypic plasticity to bet-hedging, which are likely to have important consequences for species distribution patterns and their responses to environmental change. To date, we have few empirical studies that test those predictions in natural systems, and little is known about how genetic, environmental, and developmental factors interact to define the “fluctuation niche” of species in temporally variable environments. In this study, we evaluated the effects of hydrological variability on fitness and functional trait variation in three closely related plant species in the genus Lasthenia that occupy different microhabitats within vernal pool landscapes. Using a controlled greenhouse experiment, we manipulated the mean and variability in hydrological conditions by growing plants at different depths with respect to a shared water table and manipulating the magnitude of stochastic fluctuations in the water table over time. We found that all species had similarly high relative fitness above the water table, but differed in their sensitivities to water table fluctuations. Specifically, the two species from vernal pools basins, where soil moisture is controlled by a perched water table, were negatively affected by the stochasticity treatments. In contrast, a species from the upland habitat surrounding vernal pools, where stochastic precipitation events control soil moisture variation, was insensitive to experimental fluctuations in the water table. We found strong signatures of genetic, environmental (plastic), and developmental variation in four traits that can influence plant hydrological responses. Three of these traits varied across plant development and among experimental treatments in directions that aligned with constitutive differences among species, suggesting that multiple sources of variation align to facilitate phenotypic matching with the hydrological environment in Lasthenia. We found little evidence for predicted patterns of phenotypic plasticity and bet-hedging in species and traits from predictable and stochastic environments, respectively. We propose that selection for developmental shifts in the hydrological traits of Lasthenia species has reduced or modified selection for plasticity at any given stage of development. Collectively, these results suggest that variation in species’ sensitivities to hydrological stochasticity may explain why vernal pool Lasthenia species do not occur in upland habitat, and that all three species integrate genetic, environmental, and developmental information to manage the unique patterns of temporal hydrological variation in their respective microhabitats.

     
    more » « less