skip to main content

Title: Synthesis of 2-bromo- and 2-phenyl-neo-confused porphyrins
Neo-confused porphyrins (neo-CPs), porphyrin isomers with a 1,3-connected pyrrolic subunit, are aromatic structures with a CNNN coordination core. Previously, examples of neo-CPs with fused benzo units or electron-withdrawing ester substituents have been described. In this paper, two new examples of neo-CPs are reported that lack a fused aromatic unit or an ester moiety, but instead have a bromo or phenyl substituent on the neo-confused ring. Acid-catalyzed condensation of suitably substituted 1,2′-dipyrrylmethane dialdehydes with a 2,2′-dipyrrylmethane, followed by oxidation with aqueous ferric chloride solutions, afforded the neo-CPs in 40–45% yield. These porphyrin analogues had slightly reduced diatropic ring currents and slowly decomposed in solution. The related palladium( ii ) and nickel( ii ) complexes proved to be very unstable, even though the diatropicity of the macrocycle was enhanced. This study shows that stabilizing substituents are necessary for investigations into this class of porphyrinoids. Attempts to prepare imidazole versions of neo-CPs were unsuccessful.
Authors:
;
Award ID(s):
1855240
Publication Date:
NSF-PAR ID:
10291867
Journal Name:
Organic & Biomolecular Chemistry
Volume:
18
Issue:
37
Page Range or eLocation-ID:
7336 to 7344
ISSN:
1477-0520
Sponsoring Org:
National Science Foundation
More Like this
  1. The exceptionally π-basic metal fragments {MoTp(NO)(DMAP)} and {WTp(NO)(PMe3)} (Tp = tris(pyrazolyl)borate; DMAP = 4-(N,N-dimethylamino)pyridine) form thermally stable η2-coordinated complexes with a variety of electron-deficient arenes. The tolerance of substituted arenes with fluorine-containing electron withdrawing groups (EWG; −F, −CF3, −SF5) is examined for both the molybdenum and tungsten systems. When the EWG contains a π bond (nitriles, aldehydes, ketones, ester), η2 coordination occurs predominantly on the nonaromatic functional group. However, complexation of the tungsten complex with trimethyl orthobenzoate (PhC(OMe)3) followed by hydrolysis allows access to an η2-coordinated arene with an ester substituent. In general, the tungsten system tolerates sulfur-based withdrawing groups well (e.g., PhSO2Ph, MeSO2Ph), and the integration of multiple electron-withdrawing groups on a benzene ring further enhances the π-back-bonding interaction between the metal and aromatic ligand. While the molybdenum system did not form stable η2-arene complexes with the sulfones or ortho esters, it was capable of forming rare examples of stable η2-coordinated arene complexes with a range of fluorinated benzenes (e.g., fluorobenzene, difluorobenzenes). In contrast to what has been observed for the tungsten system, these complexes formed without interference of C–H or C–F insertion.
  2. Several bacteria possess components of catabolic pathways for the synthetic polyester poly(ethylene terephthalate) (PET). These proceed by hydrolyzing the ester linkages of the polymer to its monomers, ethylene glycol and terephthalate (TPA), which are further converted into common metabolites. These pathways are crucial for genetically engineering microbes for PET upcycling, prompting interest in their fundamental biochemical and structural elucidation. Terephthalate dioxygenase (TPADO) and its cognate reductase make up a complex multimetalloenzyme system that dihydroxylates TPA, activating it for enzymatic decarboxylation to yield protocatechuic acid (PCA). Here, we report structural, biochemical, and bioinformatic analyses of TPADO. Together, these data illustrate the remarkable adaptation of TPADO to the TPA dianion as its preferred substrate, with small, protonatable ring 2-carbon substituents being among the few permitted substrate modifications. TPADO is a Rieske [2Fe2S] and mononuclear nonheme iron-dependent oxygenase (Rieske oxygenase) that shares low sequence similarity with most structurally characterized members of its family. Structural data show an α-helix–associated histidine side chain that rotates into an Fe (II)–coordinating position following binding of the substrate into an adjacent pocket. TPA interactions with side chains in this pocket were not conserved in homologs with different substrate preferences. The binding mode of the less symmetric 2-hydroxy-TPA substrate,more »the observation that PCA is its oxygenation product, and the close relationship of the TPADO α-subunit to that of anthranilate dioxygenase allowed us to propose a structure-based model for product formation. Future efforts to identify, evolve, or engineer TPADO variants with desirable properties will be enabled by the results described here.« less
  3. In this article, we have designed both colorimetric (including solution and test paper type) and spectral sensors (including UV-vis and PL type) for the quick and sensitive detection of general nitrogen-containing organic bases (NCOBs); the limit of detection could reach as low as 0.50 nM. NCOBs included 11 examples, covering aliphatic and aromatic amines, five- and six-membered heterocyclics, fused-ring heterocyclics, amino acids, and antibiotics. Furthermore, the assays demonstrated high reliability in sensing NCOBs and excellent ability to distinguish NCOBs from oxygen and sulfur containing organics. The assays developed could find important applications for the detection of NCOBs in the fields of biomedicine, chemistry, and agriculture.
  4. Newly developed fused-ring electron acceptors (FREAs) have proven to be an effective class of materials for extending the absorption window and boosting the efficiency of organic photovoltaics (OPVs). While numerous acceptors have been developed, there is surprisingly little structural diversity among high performance FREAs in literature. Of the high efficiency electron acceptors reported, the vast majority utilize derivatives of 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (INCN) as the acceptor moiety. It has been postulated that the high electron mobility exhibited by FREA molecules with INCN end groups is a result of close π–π stacking between the neighboring planar INCN groups, forming an effective charge transport pathway between molecules. To explore this as a design rationale for electron acceptors, we synthesized a new fused-ring electron acceptor, IDTCF, which has methyl substituents out of plane to the conjugated acceptor backbone. These methyl groups hinder packing and expand the π–π stacking distance by ∼1 Å, but have little impact on the optical or electrochemical properties of the individual FREA molecule. The extra steric hindrance from the out of plane methyl substituents restricts packing and results in large amounts of geminate recombination, thus degrading the device performance. Our results show that intermolecular interactions (especially π–π stacking between end groups)more »play a crucial role in performance of FREAs. We demonstrated that the planarity of the acceptor unit is of paramount importance as even minor deviations in end group distance are enough to disrupt crystallinity and cripple device performance.« less
  5. We report a series of redox-active bis(pincer) Pd( ii ) complexes in which the redox active units are based on either a diarylamido or a carbazolide framework. Compounds 1 and 2 contain two full diarylamido/bis(pincer) PNP units connected either via an Ar–O–Ar linker ( 1 ) or an Ar–Ar bond ( 2 ). Compound 3 is a fused bis(pincer) where the two PNP units share an aromatic ring. Compound 4 is built around an indolo[3,2- b ]carbazole core in which two NNN pincers share an aromatic ring similarly to 3 . These metal complexes all display two reversible oxidation waves with the Δ E values increasing in the order of 1 < 2 < 4 < 3 . The same trend in increasing electronic coupling emerges from the analysis of the IV-CT bands in the NIR portion of the optical spectra. The analysis of these compounds was further advanced by data from EPR spectroscopy, X-ray diffractometry, and DFT calculations. It is concluded that the monooxidized cations 2+–4+ belong to Class III on the Robin-Day classification of mixed-valence compounds. Compound 4 possesses enforced near-planarity that enables delocalization of the unpaired electron in 4+ across a broader conjugated system compared to 3+more ».« less