skip to main content


Title: Metamaterial-like aerogels for broadband vibration mitigation
We report a mechanical metamaterial-like behavior as a function of the micro/nanostructure of otherwise chemically identical aliphatic polyurea aerogels. Transmissibility varies dramatically with frequency in these aerogels. Broadband vibration mitigation is provided at low frequencies (500–1000 Hz) through self-assembly of locally resonant metastructures wherein polyurea microspheres are embedded in a polyurea web-like network. A micromechanical constitutive model based on a discrete element method is established to explain the vibration mitigation mechanism. Simulations confirm the metamaterial-like behavior with a negative dynamic material stiffness for the micro-metastructured aerogels in a much wider frequency range than the majority of previously reported locally resonant metamaterials.  more » « less
Award ID(s):
1661246
NSF-PAR ID:
10291873
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
17
Issue:
17
ISSN:
1744-683X
Page Range / eLocation ID:
4496 to 4503
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Acoustic/elastic metamaterials that rely on engineered microstructures instead of chemical composition enable a rich variety of extraordinary effective properties that are suited for various applications including vibration/noise isolation, high-resolution medical imaging, and energy harvesting and mitigation. However, the static nature of these elastic wave guides limits their potential for active elastic-wave guiding, as microstructure transformation remains a challenge to effectively apply in traditional elastic metamaterials due to the interplay of polarization and structural sensitivity. Here, a tunable, locally resonant structural waveguide is proposed and demonstrated for active vibration bandgap switching and elastic-wave manipulation between 1000–4000 Hz based on 3D printed building blocks of zinc-neutralized poly(ethylene- co -methacrylic acid) ionomer (Surlyn 9910). The ionomer exhibits shape memory behavior to enable rearrangement into new shape patterns through application of thermal stimuli that tunes mechanical performance in both space and time dimensions (4D metamaterial). The thermally induced shape-reorganization is programed to flip a series of frequency bands from passbands to bandgaps and vice versa . The continuously switched bandwidth can exceed 500 Hz. Consequently, altering the bandgap from “on” to “off” produces programmable elastic-wave propagation paths to achieve active wave guiding phenomena. An anisotropic cantilever-in-mass model is demonstrated to predict the self-adaptive dynamic responses of the printed structures with good agreement between the analytical work and experimental results. The tunable metamaterial-based waveguides illustrate the potential of 4D printed shape memory polymers in the designing and manufacturing of intelligent devices for elastic-wave control and vibration isolation. 
    more » « less
  2. Abstract A new class of electromechanically coupled metamaterial is presented which relies on magnetic field interactions between the host structure and a local resonator circuit to realize novel vibration control capabilities. The metamaterial chain exhibits a highly tunable vibration band gap which can be easily placed at a desired frequency using the resonant circuit parameters, providing a robust mechanism to independently alter the band gap width, depth, and frequency of maximum attenuation. In its dissipative form, the electromechanical metamaterial is shown to exhibit electrical metadamping as a function of the local resonance circuit resistance. The impact of the damping ratio as a function of the electrical resistance is characterized in frequency and time domains, and related to the infinite system dynamics. A robust experimental realization of the system is constructed which achieves electromechanical coupling through a moving coil and magnet system. The apparatus is used to show that the band gap location and depth can be readily tuned with the circuit elements. The presented metamaterial has potential for meaningful vibroacoustic practical applications in addition to revealing fundamentally new properties of damped electrically-resonant structures. 
    more » « less
  3. Tunable piezoelectric metasurfaces have been proposed as a means of adaptively steering incident elastic waves for various applications in vibration mitigation and control. Bonding piezoelectric material to thin structures introduces electromechanical coupling, enabling structural dynamics to be altered via tunable electric shunts connected across each unit cell. For example, by carefully calibrating the inductive shunts, it is possible to implement the discrete phase shifts necessary for gradient-based waveguiding behaviors. However, experimental validations of localized phase shifting are challenging due to the narrow bandgap of local resonators, resulting in poor transmission of incident waves and high sensitivity to transient noise. These factors, in combination with the difficulties in experimental circuitry synthesis, can lead to significant variability of data acquired within the bandgap operating region. This paper presents a systematic approach for extracting localized phase shifts by taking advantage of the inherent correlation between the incident and transmitted wavefronts. During this procedure, matched filtering greatly reduces noise in the transmitted signal when operating in or near bandgap frequencies. Experimental results demonstrate phase shifts as large as −170° within the locally resonant bandgap, with an average 28% reduction in error relative to a direct time domain measurement of phase, enabling effective comparison of the dispersive behavior with corresponding analytical and finite element models. In addition to demonstrating the tunable waveguide characteristics of a piezoelectric metasurface, this technique can easily be extended to validate localized phase shifting of other elastic waveguiding metasurfaces.

     
    more » « less
  4. null (Ed.)
    Abstract Automated inverse design methods are critical to the development of metamaterial systems that exhibit special user-demanded properties. While machine learning approaches represent an emerging paradigm in the design of metamaterial structures, the ability to retrieve inverse designs on-demand remains lacking. Such an ability can be useful in accelerating optimization-based inverse design processes. This paper develops an inverse design framework that provides this capability through the novel usage of invertible neural networks (INNs). We exploit an INN architecture that can be trained to perform forward prediction over a set of high-fidelity samples and automatically learns the reverse mapping with guaranteed invertibility. We apply this INN for modeling the frequency response of periodic and aperiodic phononic structures, with the performance demonstrated on vibration suppression of drill pipes. Training and testing samples are generated by employing a transfer matrix method. The INN models provide competitive forward and inverse prediction performance compared to typical deep neural networks (DNNs). These INN models are used to retrieve approximate inverse designs for a queried non-resonant frequency range; the inverse designs are then used to initialize a constrained gradient-based optimization process to find a more accurate inverse design that also minimizes mass. The INN-initialized optimizations are found to be generally superior in terms of the queried property and mass compared to randomly initialized and inverse DNN-initialized optimizations. Particle swarm optimization with INN-derived initial points is then found to provide even better solutions, especially for the higher-dimensional aperiodic structures. 
    more » « less
  5. Abstract

    Recently, vibration energy harvesting has been seen as a viable energy source to provide for our energy dependent society. Researchers have studied systems ranging from civil structures like bridges to biomechanical systems including human motion as potential sources of vibration energy. In this work, a bench-top system of a piecewise-linear (PWL) nonlinear vibration harvester is studied. A similar idealized model of the harvester was previously looked at numerically, and in this work the method is adjusted to handle physical systems to construct a realistic harvester design. With the physically realizable harvester design, the resonant frequency of the system is able to be tuned by changing the gap size between the oscillator and mechanical stopper, ensuring optimal performance over a broad frequency range. Current nonlinear harvester designs show decreased performance at certain excitation conditions, but this design overcomes these issues while also still maintaining the performance of a linear harvester at resonance. In this investigation, the system is tested at various excitation conditions and gap sizes. The computational response of the resonance behavior of the PWL system is validated against the experiments. Additionally, the electromechanical response is also validated with the experiments by comparing the output power generated from the experiments with the computational prediction.

     
    more » « less