Traditional engineering courses typically approach teaching and problem solving by focusing on the physical dimensions of those problems without consideration of dynamic social and ethical dimensions. As such, projects can fail to consider community questions and concerns, broader impacts upon society, or otherwise result in inequitable outcomes. And, despite the fact that students in engineering receive training on the Professional Code of Ethics for Engineers, to which they are expected to adhere in practice, many students are unable to recognize and analyze real-life ethical challenges as they arise. Indeed, research has found that students are typically less engaged with ethics—defined as the awareness and judgment of microethics and macroethics, sensitivity to diversity, and interest in promoting organizational ethical culture—at the end of their engineering studies than they were at the beginning. As such, many studies have focused on developing and improving the curriculum surrounding ethics through, for instance, exposing students to ethics case studies. However, such ethics courses often present a narrow and simplified view of ethics that students may struggle to integrate with their broader experience as engineers. Thus, there is a critical need to unpack the complexity of ethical behavior amongst engineering students in order to determine how to better foster ethical judgment and behavior. Promoting ethical behavior among engineering students and developing a culture of ethical behavior within institutions have become goals of many engineering programs. Towards this goal, we present an overview of the current scholarship of engineering ethics and propose a theoretical framework of ethical behavior using a review of articles related to engineering ethics from 1990-2020. These articles were selected based upon their diversity of scope and methods until saturation was reached. A thematic analysis of articles was then performed using Nvivo. The review engages in theories across disciplines including philosophy, education and psychology. Preliminary results identify two major kinds of drivers of ethical behavior, namely individual level ethical behavior drivers (awareness of microethics, awareness of macroethics, implicit understanding, and explicit understanding) and institutional drivers (diversity and institutional ethical culture). In this paper, we present an overview and discussion of two drivers of ethical behavior at the individual level, namely awareness of microethics and awareness of macroethics, based on a review of 50 articles. Our results indicate that an awareness of both microethics and macroethics is essential in promoting ethical behavior amongst students. The review also points to a need to focus on increasing students’ awareness of macroethics. This research thus addresses the need, driven by existing scholarship, to identify a conceptual framework for explaining how ethical judgment and behavior in engineering can be further promoted.
more »
« less
Imagine a more ethical AI: Using stories to develop teens’ awareness and understanding of artificial intelligence and its societal impacts
Artificial intelligence (AI) tools and technologies
are increasingly prevalent in society. Many teens interact with AI
devices on a daily basis but often have a limited understanding of
how AI works, as well as how it impacts society more broadly. It
is critical to develop youths’ understanding of AI, cultivate ethical
awareness, and support diverse youth in pursuing computer
science to help ensure future development of more equitable AI
technologies. Here, we share our experiences developing and
remotely facilitating an interdisciplinary AI ethics program for
secondary students designed to increase teens’ awareness and
understanding of AI and its societal impacts. Students discussed
stories with embedded ethical dilemmas, engaged with AI media
and simulations, and created digital products to express their
stance on an AI ethics issue. Across four iterations in formal and
informal settings, we found students to be engaged in AI stories
and invested in learning about AI and its societal impacts. Short
stories were effective in raising awareness, focusing discussion and
supporting students in developing a more nuanced understanding
of AI ethics issues, such as fairness, bias and privacy.
more »
« less
- Award ID(s):
- 1934151
- PAR ID:
- 10292023
- Date Published:
- Journal Name:
- RESPECT 2021 virtual conference; Annual Conference on Research in Equity and Sustained Participation in Engineering, Computing, and Technology
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The recent surge in interest in ethics in artificial intelligence may leave many educators wondering how to address moral, ethical, and philosophical issues in their AI courses. As instructors we want to develop curriculum that not only prepares students to be artificial intelligence practitioners, but also to understand the moral, ethical, and philosophical impacts that artificial intelligence will have on society. In this article we provide practical case studies and links to resources for use by AI educators. We also provide concrete suggestions on how to integrate AI ethics into a general artificial intelligence course and how to teach a stand-alone artificial intelligence ethics course.more » « less
-
The recent surge in interest in ethics in artificial intelligence may leave many educators wondering how to address moral, ethical, and philosophical issues in their AI courses. As instructors we want to develop curriculum that not only prepares students to be artificial intelligence practitioners, but also to understand the moral, ethical, and philosophical impacts that artificial intelligence will have on society. In this article we provide practical case studies and links to resources for use by AI educators. We also provide concrete suggestions on how to integrate AI ethics into a general artificial intelligence course and how to teach a stand-alone artificial intelligence ethics course.more » « less
-
Understanding the relationship between science and society is included as a core competency for biology students in the United States. However, traditional undergraduate biology instruction emphasizes scientific practice and generally avoids potentially controversial issues at the intersection of science and society, such as representation in STEM, historical unethical research experiments, biology of sex and gender, and environmental justice. As calls grow to highlight this core competency, it is critical we investigate the impact of including these topics in undergraduate biology education. Here, we implemented a semester-long ideological awareness curriculum that emphasized biases, stereotypes, and assumptions that have shaped historical and contemporary science. We taught this curriculum to one section of a non-majors introductory biology course and compared the outcomes to a section of the same course taught using traditional biology content (hereafter the ‘traditional’ section) that did not emphasize societal topics. Both sections of students created concept maps for their final exam, which we coded for ‘society’ and ‘biology’ content. We then assessed (1) the amount of societal content included in the concept maps, and (2) which societal topics were mentioned in each section. We found that students in the ideologically aware section included more societal content in their concept maps than the students in the traditional section. Students exposed to the ideological awareness modules often mentioned the topics covered in those modules, whereas students in the traditional section most commonly mentioned faulty scientific information such as pseudoscience or non-credible research, which was emphasized in the first chapter of the required text-book for both sections. Our results show students who were not engaged in activities about ideological awareness in biology had fewer notions of how society impacts science at the end of the semester. These findings highlight the importance of intentionally teaching students the bidirectional impacts of science and society.more » « less
-
While implementing with caution, Artificial Intelligence (AI) holds potential to help nations address pressing social issues, such as homelessness, climate change, and healthcare accessibility. With the existing and potential economic and social benefits of AI, it is crucial to integrate AI learning in undergraduate education. This paper presents the preliminary findings of a course project that engages students to learn AI by prototyping solutions to address important social issues in their communities among 120 undergraduate MIS students. Students worked in groups and developed chatbots that addressed a variety of community issues during COVID-19. A survey study shows students’ enhanced understanding and mastery of AI concepts and applications, empowerment of contributing to their communities through AI innovation, and an emerging awareness of diversity, equity, and ethical issues in the community and AI technologies. We conclude with implications of learning AI, innovation, and ethics through the lens of AI for social good.more » « less