skip to main content


Title: Imagine a more ethical AI: Using stories to develop teens’ awareness and understanding of artificial intelligence and its societal impacts
Artificial intelligence (AI) tools and technologies are increasingly prevalent in society. Many teens interact with AI devices on a daily basis but often have a limited understanding of how AI works, as well as how it impacts society more broadly. It is critical to develop youths’ understanding of AI, cultivate ethical awareness, and support diverse youth in pursuing computer science to help ensure future development of more equitable AI technologies. Here, we share our experiences developing and remotely facilitating an interdisciplinary AI ethics program for secondary students designed to increase teens’ awareness and understanding of AI and its societal impacts. Students discussed stories with embedded ethical dilemmas, engaged with AI media and simulations, and created digital products to express their stance on an AI ethics issue. Across four iterations in formal and informal settings, we found students to be engaged in AI stories and invested in learning about AI and its societal impacts. Short stories were effective in raising awareness, focusing discussion and supporting students in developing a more nuanced understanding of AI ethics issues, such as fairness, bias and privacy.  more » « less
Award ID(s):
1934151
NSF-PAR ID:
10292023
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
RESPECT 2021 virtual conference; Annual Conference on Research in Equity and Sustained Participation in Engineering, Computing, and Technology
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Traditional engineering courses typically approach teaching and problem solving by focusing on the physical dimensions of those problems without consideration of dynamic social and ethical dimensions. As such, projects can fail to consider community questions and concerns, broader impacts upon society, or otherwise result in inequitable outcomes. And, despite the fact that students in engineering receive training on the Professional Code of Ethics for Engineers, to which they are expected to adhere in practice, many students are unable to recognize and analyze real-life ethical challenges as they arise. Indeed, research has found that students are typically less engaged with ethics—defined as the awareness and judgment of microethics and macroethics, sensitivity to diversity, and interest in promoting organizational ethical culture—at the end of their engineering studies than they were at the beginning. As such, many studies have focused on developing and improving the curriculum surrounding ethics through, for instance, exposing students to ethics case studies. However, such ethics courses often present a narrow and simplified view of ethics that students may struggle to integrate with their broader experience as engineers. Thus, there is a critical need to unpack the complexity of ethical behavior amongst engineering students in order to determine how to better foster ethical judgment and behavior. Promoting ethical behavior among engineering students and developing a culture of ethical behavior within institutions have become goals of many engineering programs. Towards this goal, we present an overview of the current scholarship of engineering ethics and propose a theoretical framework of ethical behavior using a review of articles related to engineering ethics from 1990-2020. These articles were selected based upon their diversity of scope and methods until saturation was reached. A thematic analysis of articles was then performed using Nvivo. The review engages in theories across disciplines including philosophy, education and psychology. Preliminary results identify two major kinds of drivers of ethical behavior, namely individual level ethical behavior drivers (awareness of microethics, awareness of macroethics, implicit understanding, and explicit understanding) and institutional drivers (diversity and institutional ethical culture). In this paper, we present an overview and discussion of two drivers of ethical behavior at the individual level, namely awareness of microethics and awareness of macroethics, based on a review of 50 articles. Our results indicate that an awareness of both microethics and macroethics is essential in promoting ethical behavior amongst students. The review also points to a need to focus on increasing students’ awareness of macroethics. This research thus addresses the need, driven by existing scholarship, to identify a conceptual framework for explaining how ethical judgment and behavior in engineering can be further promoted. 
    more » « less
  2. As the field of engineering faces looming societal issues, it becomes particularly important to foster more “holistic engineers” with systems-thinking skills and an understanding of the macro-ethical impacts of their work (Canny and Bielefeldt, 2015) Macro-ethics here refers to the collective social responsibility of engineers as a profession, as opposed to micro-ethics, which concern activities within the profession (Herkert, 2005). However, college students studying engineering in the United States exhibit a decline in concern for public welfare over the course of their education (Cech, 2014) as well as a tendency to orient to micro-ethical issues over macro-ethical issues (Schiff et al, 2020). Scholars attribute these trends to ideologies pervasive in engineering spaces, such as depoliticization of engineering practice, technocracy, and meritocracy (Cech, 2014; Slaton, 2015). While Cech (2014) argues these status quo ideologies in engineering are maintained by a “culture of disengagement” that decreases interest in public welfare, Radoff et al. (2022) find indications that additional factors contribute to engaged students’ reproduction of such ideologies. They find, for example, instances of students in reproducing dehumanizing narratives regarding low-income communities, despite their enrollment in a voluntary program premised on cultivating socially responsible STEM professionals. This finding suggests that even students who remain “engaged” to some degree can reproduce status quo ideologies which Cech (2014) attributes to disengagement. One explanation as to why a macro-ethically “engaged” student may fail to attend to the social aspects of design follows a deficit narrative: a lack of knowledge or ability. We see this assumption in comparisons of students’ and experts’ design processes, where the areas in which students behave differently than experts are interpreted as areas that require additional instruction on how to behave more like the experts (Atman et al., 2008). This presupposition of students’ lacking knowledge or skills, however, backgrounds contextual or interactional factors. Philip et al. (2018) challenges such assumptions in their analysis of a classroom discussion on the ethics of drone warfare, which exemplifies students’ convergence to American nationalism, but with the framing that this convergence is interactionally created, rather than the result of individual students’ stable, dogmatic beliefs. However, because their analysis is limited to the scope of a single class discussion, the extent to which students’ performance is situated in said class remains unclear. In this paper, we attempt to understand the ways in which students reproduce ideologies dominant in engineering, as well as the situated nature of students’ ideological orientations in collaborative work. We consider a case study focus group from Radoff et al. (2022) where students reasoned through a hypothetical design scenario about a grocery store. We show how, despite many opportunities where problematic status-quo narratives are momentarily challenged, the students generally reject the challenges, not by arguing against them, but by positioning them outside the scope of their work. Further, we show how these moments of rejection are tightly coupled with attempts to emulate the multinational technology company Amazon. Finally, we use additional data to illustrate the situatedness of one student’s performance, and theorize the influence of Amazon as a “strange attractor” in this student’s situated reasoning. 
    more » « less
  3. null (Ed.)
    Ethics and social responsibility have frequently been identified as important areas of practice for professional engineers. Thus, measuring engineering ethics and social responsibility is critical to assessing the abilities of engineering students, understanding how those abilities change over time, and exploring the impacts of certain ethical interventions, such as coursework or participation in extracurricular activities. However, measurement of these constructs is difficult, as they are complex and multi-faceted. Much prior research has been carried out to develop and assess ethical interventions in engineering education, but the findings have been mixed, in part because of these measurement challenges. To address this variation in prior work, we have designed and carried out a five year, longitudinal, mixed-methods study to explore students’ perceptions of ethics and social responsibility. This study relies on both repeated use of quantitative measures related to ethics and repeated qualitative interviews to explore how students’ perceptions of these issues change across time, between institutions, and in response to participation in certain experiences. This paper focuses on the thematic analysis and preliminary results of the 33 pairs of interviews that were gathered from participants at three different universities in Year 1 and Year 4 of their undergraduate studies. Given the multifaceted and complex nature of ethics, measuring and assessing how students’ perceive its various aspects (e.g. those related to ethical climate, moral awareness, moral disengagement etc.) has proven challenging. Furthermore, investigating how students’ perceptions of these concepts vary over time adds another layer of complexity for analyzing our longitudinal data. For example, a student might show increased understanding in one aspect of ethics over time and consistency in another, making it difficult to identify patterns or the impacts of specific influences. Due to this large variation in student experiences and perspectives, we used single case analysis to analyze the longitudinal interviews of a single participant, Corvin. From this analysis, three themes emerged in the student's responses: a shift in his views of engineering ethics and social responsibility from idealism to pragmatism; an adjustment in how he thinks engineers should balance their responsibilities to the public and to their employers; and the characteristics he identifies for ethical engineers. This paper will be beneficial for engineering educators and researchers who are interested in measuring and developing ethical capabilities among engineering students. 
    more » « less
  4. null (Ed.)
    In conjunction with the increasing ubiquity of technology, computing educators have identified the need for pedagogical engagement with ethical awareness and moral reasoning. Typical approaches to incorporating ethics in computing curricula have focused primarily on abstract methods, principles, or paradigms of ethical reasoning, with relatively little focus on examining and developing students’ pragmatic awareness of ethics as grounded in their everyday work practices. In this paper, we identify and describe computing students’ negotiation of values as they engage in authentic design problems through a lab protocol study. We collected data from four groups of three students each, with each group including participants from either undergraduate User Experience Design students, Industrial Engineering students, or a mix of both. We used a thematic analysis approach to identify the roles that students took on to address the design prompt. Through our analysis, we found that the students took on a variety of “dark” roles that resulted in manipulation of the user and prioritization of stakeholder needs over user needs, with a focus either on building solutions or building rationale for design decisions. We found these roles to actively propagate through design discourses, impacting other designers in ways that frequently reinforced unethical decision making. Even when students were aware of ethical concerns based on their educational training, this awareness did not consistently result in ethically-sound decisions. These findings indicate the need for additional ethical supports to inform everyday computing practice, including means of actively identifying and balancing negative societal impacts of design decisions. The roles we have identified may productively support the development of pragmatically-focused ethical training in computing education, while adding more precision to future analysis of computing student discourses and outputs. 
    more » « less
  5. Understanding the relationship between science and society is included as a core competency for biology students in the United States. However, traditional undergraduate biology instruction emphasizes scientific practice and generally avoids potentially controversial issues at the intersection of science and society, such as representation in STEM, historical unethical research experiments, biology of sex and gender, and environmental justice. As calls grow to highlight this core competency, it is critical we investigate the impact of including these topics in undergraduate biology education. Here, we implemented a semester-long ideological awareness curriculum that emphasized biases, stereotypes, and assumptions that have shaped historical and contemporary science. We taught this curriculum to one section of a non-majors introductory biology course and compared the outcomes to a section of the same course taught using traditional biology content (hereafter the ‘traditional’ section) that did not emphasize societal topics. Both sections of students created concept maps for their final exam, which we coded for ‘society’ and ‘biology’ content. We then assessed (1) the amount of societal content included in the concept maps, and (2) which societal topics were mentioned in each section. We found that students in the ideologically aware section included more societal content in their concept maps than the students in the traditional section. Students exposed to the ideological awareness modules often mentioned the topics covered in those modules, whereas students in the traditional section most commonly mentioned faulty scientific information such as pseudoscience or non-credible research, which was emphasized in the first chapter of the required text-book for both sections. Our results show students who were not engaged in activities about ideological awareness in biology had fewer notions of how society impacts science at the end of the semester. These findings highlight the importance of intentionally teaching students the bidirectional impacts of science and society. 
    more » « less