For decades one has strived to synthesize a compound with the longest covalent C−C bond applying predominantly steric hindrance and/or strain to achieve this goal. On the other hand electronic effects have been added to the repertoire, such as realized in the electron deficient ethane radical cation in its D3d form. Recently, negative hyperconjugation effects occurring in diamino-o-carborane analogs such as di-N,N-dimethylamino-o-carborane have been held responsible for their long C−C bonds. In this work we systematically analyzed CC bonding in a diverse set of 53 molecules including clamped bonds, highly sterically strained complexes such as diamondoid dimers, electron deficient species, and di-N,N-dimethylamino-o-carborane to cover the whole spectrum of possibilities for elongating a covalent C−C bond to the limit. As a quantitative intrinsic bond strength measure, we utilized local vibrational CC stretching force constants ka(CC) and related bond strength orders BSO n(CC), computed at the ωB97X-D/aug-cc-pVTZ level of theory. Our systematic study quantifies for the first time that whereas steric hindrance and/or strain definitely elongate a C−C bond, electronic effects can lead to even longer and weaker C−C bonds. Within our set of molecules the electron deficient ethane radical cation, in D3d symmetry, acquires the longest C−C bond with a length of 1.935 Å followed by di-N,N-dimethylamino-o-carborane with a bond length of 1.930 Å. However, the C−C bond in di-N,N-dimethylamino-o-carborane is the weakest with a BSO n value of 0.209 compared to 0.286 for the ethane radical cation; another example that the longer bond is not always the weaker bond. Based on our findings we provide new guidelines for the general characterization of CC bonds based on local vibrational CC stretching force constants and for future design of compounds with long C−C bonds.
more »
« less
Structural and energetic properties of OC–BX 3 complexes: unrealized potential for bond-stretch isomerism
We have explored the structural and energetic properties of OC–BX 3 (X = F, Cl, or Br) complexes using computations and low-temperature infrared spectroscopy. Quantum-chemical calculations have provided equilibrium structures, binding energies, vibrational frequencies, and B–C potential energy curves. The OC–BF 3 system is a weak, long-bonded complex with a single minimum on the B–C potential ( R (B–C) = 2.865 Å). For the remaining two complexes, OC–BCl 3 and OC–BBr 3 , computations predict two stable minima on their B–C potential curves. The BCl 3 system is a weak complex with a long bond ( R (B–C) = 3.358 Å), but it exhibits a secondary, meta-stable minimum with a short bond length of 1.659 Å. For OC–BBr 3 , the system is a weak complex with a relatively short bond of 1.604 Å (according to wB97X-D/aug-cc-pVTZ), but also has a secondary minimum at R (B–C) = 3.483 Å. This long-bond structure is the global minimum according to CCSD/aug-cc-pVTZ. In addition, the long-bond forms of both OC–BCl 3 and OC–BBr 3 were observed in matrix-isolation IR experiments. The measured CO stretching frequencies were 2145 cm −1 and 2143 cm −1 , respectively. No signals due to the short-bond forms of OC–BCl 3 and OC–BBr 3 were observed.
more »
« less
- Award ID(s):
- 2018427
- PAR ID:
- 10292094
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 23
- Issue:
- 27
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 14678 to 14686
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The triel bond (TrB) formed between Be(CH3)2/Mg(CH3)2and TrX3(Tr=B, Al, and Ga; X=H, F, Cl, Br, and I) is investigated via the MP2/aug‐cc‐pVTZ(PP) quantum chemical protocol. The C atoms of the methyl groups in M(CH3)2are characterized by a negative electrostatic potential and act as an electron donor in a triel bond with the π‐hole above the Tr atom of planar TrX3. The interaction energy spans a wide range between −2 and −69 kcal/mol. Mg(CH3)2forms a stronger TrB than does Be(CH3)2, which comports with the more negative electrostatic potential on its methyl groups. Some of the complexes involving Mg display a high degree of transfer of the methyl group from Mg to Tr, which is accompanied by an inversion of the bridging methyl and a sizable pyramidalization of the TrX3unit. The geometries of these complexes have the properties of the long sought pentacoordinate C which has eluded identification and characterization in the past.more » « less
-
When attached to a tetrazole, a TtR 3 group (Tt = C, Si; R = H, F) engages in a Tt⋯N tetrel bond (TtB) with the Lewis base NCM (M = Li, Na). MP2/aug-cc-pVTZ calculations find that the Si⋯N TtB is rather strong, more than 20 kcal mol −1 for SiH 3 , and between 46 and 53 kcal mol −1 for SiF 3 . The C⋯N TtBs are relatively weaker, less than 8 kcal mol −1 . All of these bonds are intensified when a BH 3 or BF 3 molecule forms a triel bond to a N atom of the tetrazole ring, particularly for the C⋯N TtB, up to 11 kcal mol −1 . In these triads, the SiR 3 group displaces far enough along the line toward the base that it may be thought of as half transferred.more » « less
-
Insight into the Binding of Argon to Cyclic Water Clusters from Symmetry-Adapted Perturbation TheoryThis work systematically examines the interactions between a single argon atom and the edges and faces of cyclic H2O clusters containing three–five water molecules (Ar(H2O)n=3–5). Full geometry optimizations and subsequent harmonic vibrational frequency computations were performed using MP2 with a triple-ζ correlation consistent basis set augmented with diffuse functions on the heavy atoms (cc-pVTZ for H and aug-cc-pVTZ for O and Ar; denoted as haTZ). Optimized structures and harmonic vibrational frequencies were also obtained with the two-body–many-body (2b:Mb) and three-body–many-body (3b:Mb) techniques; here, high-level CCSD(T) computations capture up through the two-body or three-body contributions from the many-body expansion, respectively, while less demanding MP2 computations recover all higher-order contributions. Five unique stationary points have been identified in which Ar binds to the cyclic water trimer, along with four for (H2O)4 and three for (H2O)5. To the best of our knowledge, eleven of these twelve structures have been characterized here for the first time. Ar consistently binds more strongly to the faces than the edges of the cyclic (H2O)n clusters, by as much as a factor of two. The 3b:Mb electronic energies computed with the haTZ basis set indicate that Ar binds to the faces of the water clusters by at least 3 kJ mol−1 and by nearly 6 kJ mol−1 for one Ar(H2O)5 complex. An analysis of the interaction energies for the different binding motifs based on symmetry-adapted perturbation theory (SAPT) indicates that dispersion interactions are primarily responsible for the observed trends. The binding of a single Ar atom to a face of these cyclic water clusters can induce perturbations to the harmonic vibrational frequencies on the order of 5 cm−1 for some hydrogen-bonded OH stretching frequencies.more » « less
-
computational models are validated against various experimental data in order to assess overall accuracy and identify the method most apt for a given situation. In my research group, we have often validated quantum-chemical structure predictions against experimental gas-phase geometries. However, these structures are formally different; the experimental results reflect average distances that result upon ground-state vibrational averaging, whereas the theory predicts equilibrium geometries. Almost always, this distinction is trivial, and beyond the precision afforded by either experiment or theory. In one rather noteworthy instance, however, the CH3CN–BF3 complex, we demonstrated that there was a genuine, and rather significant difference between the experimental and theoretical geometries; the experimental B-N distance that was nearly 0.2 Å longer than that in the theoretically-determined equilibrium geometry. This resulted from an extreme anharmonicity in the donor-acceptor (B-N) potential, which manifested a significant asymmetry in ground state vibrational wavefunction. In our recent work, we have a similar, albeit more subtle trend in several other donor-acceptor systems including H2O–SO3, H3N–SiF4, C6H5N–SO2, and H3N–SO3. What we have noted specifically, is that the predicted donor-accptor bond lengths among several DFT and post-HF methods (with the aug-cc-pVTZ and aug-cc-pVQZ basis sets) are incredibly consistent, yet they differ from the experimental bond lengths to an extent that exceeds the quoted uncertainty. For pyridine-SO2, these differences rival CH3CN–BF3 (about 0.2) and in fact, the shape of the donor-acceptor potentials are quite similar. The other cases are more subtle, with experiment-theory differences of several hundredths of an angstrom. Yet the donor-acceptor potential curves in these systems are significantly anharmonic. The extent of the asymmetry in the ground vibrational wavefunction for the donor-acceptor stretching mode will be explored explicitly, in order to quantitatively assess the differences between the equilibrium and vibrationally averaged structures.more » « less
An official website of the United States government

