The optimized geometries, vibrational frequencies, and dissociation energies from MP2 and CCSD(T) computations with large correlation consistent basis sets are reported for (H2S)2and H2O/H2S. Anharmonic vibrational frequencies have also been computed with second‐order vibrational perturbation theory (VPT2). As such, the fundamental frequencies, overtones, and combination bands reported in this study should also provide a useful road map for future spectroscopic studies of the simple but important heterogeneous H2O/H2S dimer in which the hydrogen bond donor and acceptor can interchange, leading to two unique minima with very similar energies. Near the CCSD(T) complete basis set limit, the HOH⋯SH2configuration (H2O donor) lies only 0.2 kcal mol−1below the HSH⋯OH2structure (H2S donor). When the zero‐point vibrational energy is included, however, the latter configuration becomes slightly lower in energy than the former by <0.1 kcal mol−1. © 2018 Wiley Periodicals, Inc.
more »
« less
When Experimental and Theoretical Geometries are Truly Different
computational models are validated against various experimental data in order to assess overall accuracy and identify the method most apt for a given situation. In my research group, we have often validated quantum-chemical structure predictions against experimental gas-phase geometries. However, these structures are formally different; the experimental results reflect average distances that result upon ground-state vibrational averaging, whereas the theory predicts equilibrium geometries. Almost always, this distinction is trivial, and beyond the precision afforded by either experiment or theory. In one rather noteworthy instance, however, the CH3CN–BF3 complex, we demonstrated that there was a genuine, and rather significant difference between the experimental and theoretical geometries; the experimental B-N distance that was nearly 0.2 Å longer than that in the theoretically-determined equilibrium geometry. This resulted from an extreme anharmonicity in the donor-acceptor (B-N) potential, which manifested a significant asymmetry in ground state vibrational wavefunction. In our recent work, we have a similar, albeit more subtle trend in several other donor-acceptor systems including H2O–SO3, H3N–SiF4, C6H5N–SO2, and H3N–SO3. What we have noted specifically, is that the predicted donor-accptor bond lengths among several DFT and post-HF methods (with the aug-cc-pVTZ and aug-cc-pVQZ basis sets) are incredibly consistent, yet they differ from the experimental bond lengths to an extent that exceeds the quoted uncertainty. For pyridine-SO2, these differences rival CH3CN–BF3 (about 0.2) and in fact, the shape of the donor-acceptor potentials are quite similar. The other cases are more subtle, with experiment-theory differences of several hundredths of an angstrom. Yet the donor-acceptor potential curves in these systems are significantly anharmonic. The extent of the asymmetry in the ground vibrational wavefunction for the donor-acceptor stretching mode will be explored explicitly, in order to quantitatively assess the differences between the equilibrium and vibrationally averaged structures.
more »
« less
- Award ID(s):
- 2154736
- PAR ID:
- 10537466
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Format(s):
- Medium: X
- Location:
- Denver, CO
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We have explored the structural and energetic properties of OC–BX 3 (X = F, Cl, or Br) complexes using computations and low-temperature infrared spectroscopy. Quantum-chemical calculations have provided equilibrium structures, binding energies, vibrational frequencies, and B–C potential energy curves. The OC–BF 3 system is a weak, long-bonded complex with a single minimum on the B–C potential ( R (B–C) = 2.865 Å). For the remaining two complexes, OC–BCl 3 and OC–BBr 3 , computations predict two stable minima on their B–C potential curves. The BCl 3 system is a weak complex with a long bond ( R (B–C) = 3.358 Å), but it exhibits a secondary, meta-stable minimum with a short bond length of 1.659 Å. For OC–BBr 3 , the system is a weak complex with a relatively short bond of 1.604 Å (according to wB97X-D/aug-cc-pVTZ), but also has a secondary minimum at R (B–C) = 3.483 Å. This long-bond structure is the global minimum according to CCSD/aug-cc-pVTZ. In addition, the long-bond forms of both OC–BCl 3 and OC–BBr 3 were observed in matrix-isolation IR experiments. The measured CO stretching frequencies were 2145 cm −1 and 2143 cm −1 , respectively. No signals due to the short-bond forms of OC–BCl 3 and OC–BBr 3 were observed.more » « less
-
The focal-point approximation can be used to estimate a high-accuracy, slow quantum chemistry computation by combining several lower-accuracy, faster computations. We examine the performance of focal-point methods by combining second-order Møller–Plesset perturbation theory (MP2) with coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] for the calculation of harmonic frequencies and that of fundamental frequencies using second-order vibrational perturbation theory (VPT2). In contrast to standard CCSD(T), the focal-point CCSD(T) method approaches the complete basis set (CBS) limit with only triple-ζ basis sets for the coupled-cluster portion of the computation. The predicted harmonic and fundamental frequencies were compared with the experimental values for a set of 20 molecules containing up to six atoms. The focal-point method combining CCSD(T)/aug-cc-pV(T + d)Z with CBS-extrapolated MP2 has mean absolute errors vs experiment of only 7.3 cm−1 for the fundamental frequencies, which are essentially the same as the mean absolute error for CCSD(T) extrapolated to the CBS limit using the aug-cc-pV(Q + d)Z and aug-cc-pV(5 + d)Z basis sets. However, for H2O, the focal-point procedure requires only 3% of the computation time as the extrapolated CCSD(T) result, and the cost savings will grow for larger molecules.more » « less
-
The concerted interplay between reactive nuclear and electronic motions in molecules actuates chemistry. Here, we demonstrate that out-of-plane torsional deformation and vibrational excitation of stretching motions in the electronic ground state modulate the charge-density distribution in a donor-bridge-acceptor molecule in solution. The vibrationally-induced change, visualised by transient absorption spectroscopy with a mid-infrared pump and a visible probe, is mechanistically resolved by ab initio molecular dynamics simulations. Mapping the potential energy landscape attributes the observed charge-coupled coherent nuclear motions to the population of the initial segment of a double-bond isomerization channel, also seen in biological molecules. Our results illustrate the pivotal role of pre-twisted molecular geometries in enhancing the transfer of vibrational energy to specific molecular modes, prior to thermal redistribution. This motivates the search for synthetic strategies towards achieving potentially new infrared-mediated chemistry.more » « less
-
In this study we investigate the Diels–Alder reaction between methyl acrylate and butadiene, which is catalyzed by BF3 Lewis acid in explicit water solution, using URVA and Local Mode Analysis as major tools complemented with NBO, electron density and ring puckering analyses. We considered four different starting orientations of methyl acrylate and butadiene, which led to 16 DA reactions in total. In order to isolate the catalytic effects of the BF3 catalyst and those of the water environment and exploring how these effects are synchronized, we systematically compared the non-catalyzed reaction in gas phase and aqueous solution with the catalyzed reaction in gas phase and aqueous solution. Gas phase studies were performed at the B3LYP/6-311+G(2d,p) level of theory and studies in aqueous solution were performed utilizing a QM/MM approach at the B3LYP/6-311+G(2d,p)/AMBER level of theory. The URVA results revealed reaction path curvature profiles with an overall similar pattern for all 16 reactions showing the same sequence of CC single bond formation for all of them. In contrast to the parent DA reaction with symmetric substrates causing a synchronous bond formation process, here, first the new CC single bond on the CH2 side of methyl acrylate is formed followed by the CC bond at the ester side. As for the parent DA reaction, both bond formation events occur after the TS, i.e., they do not contribute to the energy barrier. What determines the barrier is the preparation process for CC bond formation, including the approach diene and dienophile, CC bond length changes and, in particular, rehybridization of the carbon atoms involved in the formation of the cyclohexene ring. This process is modified by both the BF3 catalyst and the water environment, where both work in a hand-in-hand fashion leading to the lowest energy barrier of 9.06 kcal/mol found for the catalyzed reaction R1 in aqueous solution compared to the highest energy barrier of 20.68 kcal/mol found for the non-catalyzed reaction R1 in the gas phase. The major effect of the BF3 catalyst is the increased mutual polarization and the increased charge transfer between methyl acrylate and butadiene, facilitating the approach of diene and dienophile and the pyramidalization of the CC atoms involved in the ring formation, which leads to a lowering of the activation energy. The catalytic effect of water solution is threefold. The polar environment leads also to increased polarization and charge transfer between the reacting species, similar as in the case of the BF3 catalyst, although to a smaller extend. More important is the formation of hydrogen bonds with the reaction complex, which are stronger for the TS than for the reactant, thus stabilizing the TS which leads to a further reduction of the activation energy. As shown by the ring puckering analysis, the third effect of water is space confinement of the reacting partners, conserving the boat form of the six-member ring from the entrance to the exit reaction channel. In summary, URVA combined with LMA has led to a clearer picture on how both BF3 catalyst and aqueous environment in a synchronized effort lower the reaction barrier. These new insights will serve to further fine-tune the DA reaction of methyl acrylate and butadiene and DA reactions in general.more » « less
An official website of the United States government

