skip to main content


Title: Middle School Teachers' Self-efficacy in Teaching Computer Science and Digital Literacy
This pilot study explores the impact of the CS Pathways professional development (PD) program on the teachers' self-efficacy in teaching a middle school computer science and digital literacy (CSDL) curriculum. The main goal of the study is to investigate the attributes that describe the teachers' self-efficacy after their first-year participation in the PD. A total of 19 middle school teachers from two states, NY and MA, attended the CS Pathway PD program and completed the end-of-year survey pertaining to self-efficacy in CSDL; more than half accepted the interview to help further understand their perceptions (n=10). Principal Component Analysis (PCA) is applied to study the attributes of the teachers' self-efficacy. The preliminary results capture teachers' self-efficacy patterns, which inform the PD and indicate its effectiveness and challenges.  more » « less
Award ID(s):
1923452 1923461
NSF-PAR ID:
10292186
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
SIGCSE '21: Proceedings of the 52nd ACM Technical Symposium on Computer Science Education
Page Range / eLocation ID:
1298 to 1298
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background: Researcher-practitioner partnerships (RPPs) have gained increasing prominence within education, since they are crucial for identifying partners’ problems of practice and seeking solutions for improving district (or school) problems. The CS Pathways RPP project brought together researchers and practitioners, including middle school teachers and administrators from three urban school districts, to build teachers’ capacity to implement an inclusive computer science and digital literacy (CSDL) curriculum for all students in their middle schools. Objective: This study explored the teachers’ self-efficacy development in teaching a middle school CSDL curriculum under the project’s RPP framework. The ultimate goal was to gain insights into how the project’s RPP framework and its professional development (PD) program supported teachers’ self-efficacy development, in particular its challenges and success of the partnership. Method: Teacher participants attended the first-year PD program and were surveyed and/or interviewed about their self-efficacy in teaching CSDL curriculum, spanning topics ranging from digital literacy skills to app creation ability and curriculum implementation. Both survey and interview data were collected and analyzed using mixed methods 1) to examine the reach of the RPP PD program in terms of teachers’ self-efficacy; 2) to produce insightful understandings of the PD program impact on the project’s goal of building teachers’ self-efficacy. Results and Discussion: We reported the teachers’ self-efficacy profiles based on the survey data. A post-survey indicated that a majority of the teachers have high self-efficacy in teaching the CSDL curriculum addressed by the RPP PD program. Our analysis identified five critical benefits the project’s RPP PD program provided, namely collaborative efforts on resource and infrastructure building, content and pedagogical knowledge growth, collaboration and communication, and building teacher identity. All five features have shown direct impacts on teachers' self-efficacy. The study also reported teachers’ perceptions on the challenges they faced and potential areas for improvements. These findings indicate some important features of an effective PD program, informing the primary design of an RPP CS PD program. 
    more » « less
  2. Teacher self-efficacy (SE) has been observed to be an 'important construct for Computer Science (CS) teachers' professional development because it can predict both teaching behaviors as well as student outcomes" [1]. The purpose of the present study was to investigate teacher CS SE during a two-year federally funded professional development (PD) and curriculum development project for middle school teachers incorporating game-design and the Unity development platform. The research question investigated is: How does teacher self-efficacy for teaching computer science via game design with the Unity game development platform change during a year-long PD program? Investigations of teacher SE for teaching CS have resulted in some surprising results. For example, it has been reported that - There were no differences in self-efficacy based on teachers' overall level of experience, despite previous findings that teacher self-efficacy is related to amount of experience" and "no differences in self-efficacy related to the teachers' own level of experience with CS" [2], thus further study of CS teacher SE is warranted. Participants in this study were six middle school teachers from four middle schools in the southeastern United States. They participated in a year-long PD program learning the Unity game development platform, elements of game design, and foundations of learner motivation. Guided reflective journaling was used to track the teachers' SE during the first year of the project. Teachers completed journal prompts at four intervals. Prompts consisted of questions like "How do you currently feel about your ability to facilitate student learning with Unity?" and "Are you confident that you can implement the materials the way the project team has planned for them to be implemented?" Prior to beginning the project participants expressed confidence in being able to facilitate student learning after participating in the planned professional development, but there was some uneasiness about learning and using Unity. From a SE perspective their responses make sense, as all of the participants are experienced teachers and should have confidence in their general ability to teach. However, since Unity is a new programming environment for all of the teachers, they did not have the prior experience necessary to have a high degree of confidence that they could successfully use it with their students. 
    more » « less
  3. BRIGHT-CS (Building Student Retention through Individuated Guided coHort Training in Computer Science) is a research and development project that 1) creates a computer science learning ecosystem for middle school Black girls and other girls of color and 2) researches the merits of the ecosystem in supporting persistence in CS to determine best practices for broadening participation to other marginalized student groups in computing. First, this paper describes the BRIGHT-CS program, from the structural, instructional, and curricular designs of the program to partnerships with local and community organizations that make up the ecosystem. Second, it presents the initial findings of research on the program and its impacts on student outcomes such as social-emotional attributes associated with persistence. The study employs a multi-method descriptive design. Data includes student surveys, interviews (from students, parents, instructors, teachers, and mentors), artifact reviews, and student observations. The study includes 46 students across four middle schools in two states. At the start of the program, 37% of the students reported being very interested in CS, and 72% reported being very confident in learning CS. This is much higher than a national benchmark of students. After four months of program implementation, the qualitative results show a more nuanced picture of the value of a learning ecosystem. First, the ecosystem offers implicit messaging about equity and success. Second, the ecosystem offers explicit messaging about personal challenges and improvement. Third, following the implicit and explicit messaging to students, students went from naïve confidence to authentic self-efficacy in CS. 
    more » « less
  4. Abstract  
    more » « less
  5. This paper describes an AI Book Club as an innovative 20-hour professional development (PD) model designed to prepare teachers with AI content knowledge and an understanding of the ethical issues posed by bias in AI that are foundational to developing AI-literate citizens. The design of the intervention was motivated by a desire to manage the cognitive load of AI learning by spreading the PD program over several weeks and a desire to form and maintain a community of teachers interested in AI education during the COVID-19 pandemic. Each week participants spent an hour independently reading selections from an AI book, reviewing AI activities, and viewing videos of other educators teaching the activities, then met online for 1 hour to discuss the materials and brainstorm how they might adapt the materials for their classrooms. The participants in the AI Book Club were 37 middle school educators from 3 US school districts and 5 youth-serving organizations. The teachers are from STEM disciplines as well as Social Studies and Art. Eighty-nine percent were from underrepresented groups in STEM and CS. In this paper we describe the design of the AI Book Club, its implementation, and preliminary findings on teachers' impressions of the AI Book Club as a form of PD, thoughts about teaching AI in classrooms, and interest in continuing the book club model in the upcoming year. We conclude with recommendations for others interested in implementing a book club PD format for AI learning. 
    more » « less