skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Interaction between Political Typology and Filter Bubbles in News Recommendation Algorithms
Algorithmic personalization of news and social media content aims to improve user experience; however, there is evidence that this filtering can have the unintended side effect of creating homogeneous "filter bubbles," in which users are over-exposed to ideas that conform with their preexisting perceptions and beliefs. In this paper, we investigate this phenomenon in the context of political news recommendation algorithms, which have important implications for civil discourse. We first collect and curate a collection of over 900K news articles from 41 sources annotated by topic and partisan lean. We then conduct simulation studies to investigate how different algorithmic strategies affect filter bubble formation. Drawing on Pew studies of political typologies, we identify heterogeneous effects based on the user's pre-existing preferences. For example, we find that i) users with more extreme preferences are shown less diverse content but have higher click-through rates than users with less extreme preferences, ii) content-based and collaborative-filtering recommenders result in markedly different filter bubbles, and iii) when users have divergent views on different topics, recommenders tend to have a homogenization effect.  more » « less
Award ID(s):
1927407 1350337
PAR ID:
10292197
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
WWW '21: Proceedings of the Web Conference 2021
Page Range / eLocation ID:
3791-3801
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Content-based news recommenders learn words that correlate with user engagement and recommend articles accordingly. This can be problematic for users with diverse political preferences by topic --- e.g., users that prefer conservative articles on one topic but liberal articles on another. In such instances, recommenders can have a homogenizing effect by recommending articles with the same political lean on both topics, particularly if both topics share salient, politically polarized terms like "far right" or "radical left." In this paper, we propose attention-based neural network models to reduce this homogenization effect by increasing attention on words that are topic specific while decreasing attention on polarized, topic-general terms. We find that the proposed approach results in more accurate recommendations for simulated users with such diverse preferences. 
    more » « less
  2. Newsfeed algorithms frequently amplify misinformation and other low-quality content. How can social media platforms more effectively promote reliable information? Existing approaches are difficult to scale and vulnerable to manipulation. In this paper, we propose using the political diversity of a website’s audience as a quality signal. Using news source reliability ratings from domain experts and web browsing data from a diverse sample of 6,890 US residents, we first show that websites with more extreme and less politically diverse audiences have lower journalistic standards. We then incorporate audience diversity into a standard collaborative filtering framework and show that our improved algorithm increases the trustworthiness of websites suggested to users—especially those who most frequently consume misinformation—while keeping recommendations relevant. These findings suggest that partisan audience diversity is a valuable signal of higher journalistic standards that should be incorporated into algorithmic ranking decisions. 
    more » « less
  3. Abstract Personalized news experiences powered by recommender systems permeate our lives and have the potential to influence not only our opinions, but also our decisions. At the same time, the content and viewpoints contained within news recommendations are driven by multiple factors, including both personalization and editorial selection. Explanations could help users gain a better understanding of the factors contributing to the news items selected for them to read. Indeed, recent works show that explanations are essential for users of news recommenders to understand their consumption preferences and set intentions in line with their goals, such as goals for knowledge development and increased diversity of content or viewpoints. We give examples of such works on explanation and interactive interface interventions which have been effective in influencing readers' consumption intentions and behaviors in news recommendations. However, the state‐of‐the‐art in news recommender systems currently fall short in terms of evaluating such interventions in live systems, limiting our ability to measure their true impact on user behavior and opinions. To help understand the true benefit of these interfaces, we therefore call for improving the realism of studies for news. 
    more » « less
  4. Americans' trust in news is declining, and authenticity and transparency challenges in digital publishing contexts pose unique challenges to the ability to effectively gratify their information-seeking needs via online media. Cryptographic technologies and web-based provenance indicators have the potential to enhance the trustworthiness and transparency of digital communication, but better understandings of news consumers practices and needs are required to develop practical tools. Through a representative online survey of 400 digital news consumers and 19 follow-up interviews, we investigate how users authenticate and assign trust to news content, and identify specific needs pertaining to news transparency and authentication that could be met by digital news authentication tools. While many users currently rely on political ideology to assess news trustworthiness, we find that users of all political orientations see value in independent provenance and authentication tools for digital news. 
    more » « less
  5. Elected officials have privileged roles in public communication. In contrast to national politicians, whose posting content is more likely to be closely scrutinized by a robust ecosystem of nationally focused media outlets, sub-national politicians are more likely to openly disseminate harmful content with limited media scrutiny. In this paper, we analyze the factors that explain the online visibility of over 6.5K unique state legislators in the US and how their visibility might be impacted by posting low-credibility or uncivil content. We conducted a study of posting on Twitter and Facebook (FB) during 2020-21 to analyze how legislators engage with users on these platforms. The results indicate that distributing content with low-credibility information attracts greater attention from users on FB and Twitter for Republicans. Conversely, posting content that is considered uncivil on Twitter receives less attention. A noticeable scarcity of posts containing uncivil content was observed on FB, which may be attributed to the different communication patterns of legislators on these platforms. In most cases, the effect is more pronounced among the most ideologically extreme legislators. Our research explores the influence exerted by state legislators on online political conversations, with Twitter and FB serving as case studies. Furthermore, it sheds light on the differences in the conduct of political actors on these platforms. This study contributes to a better understanding of the role that political figures play in shaping online political discourse. 
    more » « less