skip to main content

Title: Sgr A* near-infrared flares from reconnection events in a magnetically arrested disc
ABSTRACT Large-amplitude Sgr A* near-infrared (NIR) flares result from energy injection into electrons near the black hole event horizon. Astrometry data show continuous rotation of the emission region during bright flares, and corresponding rotation of the linear polarization angle. One broad class of physical flare models invokes magnetic reconnection. Here, we show that such a scenario can arise in a general relativistic magnetohydrodynamic simulation of a magnetically arrested disc. Saturation of magnetic flux triggers eruption events, where magnetically dominated plasma is expelled from near the horizon and forms a rotating, spiral structure. Dissipation occurs via reconnection at the interface of the magnetically dominated plasma and surrounding fluid. This dissipation is associated with large increases in NIR emission in models of Sgr A*, with durations and amplitudes consistent with the observed flares. Such events occur at roughly the time-scale to re-accumulate the magnetic flux from the inner accretion disc, ≃10 h for Sgr A*. We study NIR observables from one sample event to show that the emission morphology tracks the boundary of the magnetically dominated region. As the region rotates around the black hole, the NIR centroid and linear polarization angle both undergo continuous rotation, similar to the behaviour seen in Sgr A* more » flares. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
4999 to 5007
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Magnetic reconnection can power bright, rapid flares originating from the inner magnetosphere of accreting black holes. We conduct extremely high-resolution (5376 × 2304 × 2304 cells) general-relativistic magnetohydrodynamics simulations, capturing plasmoid-mediated reconnection in a 3D magnetically arrested disk for the first time. We show that an equatorial, plasmoid-unstable current sheet forms in a transient, nonaxisymmetric, low-density magnetosphere within the inner few Schwarzschild radii. Magnetic flux bundles escape from the event horizon through reconnection at the universal plasmoid-mediated rate in this current sheet. The reconnection feeds on the highly magnetized plasma in the jets and heats the plasma that ends up trapped in flux bundles to temperatures proportional to the jet’s magnetization. The escaped flux bundles can complete a full orbit as low-density hot spots, consistent with Sgr A* observations by the GRAVITY interferometer. Reconnection near the horizon produces sufficiently energetic plasma to explain flares from accreting black holes, such as the TeV emission observed from M87. The drop in the mass accretion rate during the flare and the resulting low-density magnetosphere make it easier for very-high-energy photons produced by reconnection-accelerated particles to escape. The extreme-resolution results in a converged plasmoid-mediated reconnection rate that directly determines the timescales and propertiesmore »of the flare.« less
  2. ABSTRACT Sgr A* exhibits flares in the near-infrared and X-ray bands, with the luminosity in these bands increasing by factors of 10–100 for ≈60 min. One of the models proposed to explain these flares is synchrotron emission of non-thermal particles accelerated by magnetic reconnection events in the accretion flow. We use the results from particle-in-cell simulations of magnetic reconnection to post-process 3D two-temperature GRMHD simulations of a magnetically arrested disc (MAD). We identify current sheets, retrieve their properties, estimate their potential to accelerate non-thermal particles, and compute the expected non-thermal synchrotron emission. We find that the flux eruptions of MADs can provide suitable conditions for accelerating non-thermal particles to energies γe ≲ 106 and producing simultaneous X-ray and near-infrared flares. For a suitable choice of current-sheet parameters and a simplified synchrotron cooling prescription, the model can simultaneously reproduce the quiescent and flaring X-ray luminosities as well as the X-ray spectral shape. While the near-infrared flares are mainly due to an increase in the temperature near the black hole during the MAD flux eruptions, the X-ray emission comes from narrow current sheets bordering highly magnetized, low-density regions near the black hole, and equatorial current sheets where the flux on the blackmore »hole reconnects. As a result, not all infrared flares are accompanied by X-ray ones. The non-thermal flaring emission can extend to very hard (≲ 100 keV) X-ray energies.« less
  3. Abstract With unprecedented angular resolution, the Event Horizon Telescope (EHT) has opened a new era of black hole studies. We have previously calculated the expected polarization images of M 87* with EHT observations in mind. There, we demonstrated that circular polarization (CP) images, as well as linear polarization (LP) maps, can convey quite useful information, such as the flow structure and magnetic field configuration around the black hole. In this paper, we make new predictions for the cases in which disk emission dominates over jet emission, bearing Sgr A* in mind. Here we set the proton-to-electron temperature ratio of the disk component to be Tp/Te ∼ 2 so as to suppress jet emission relative to emission from accretion flow. As a result, we obtain ring-like images and triple-forked images around the black hole for face-on and edge-on cases, respectively. We also find significant CP components in the images (≳10% in fraction), with both positive and negative signs, amplified through the Faraday conversion, not depending sensitively on the inclination angles. Furthermore, we find a “separatrix” in the CP images, across which the sign of CP is reversed and on which the LP flux is brightest, that can be attributed to the helical magneticmore »field structure in the disk. These results indicate that future full polarization EHT images are a quite useful tracer of the magnetic field structure. We also discuss to what extent we will be able to extract information regarding magnetic field configurations under the scattering in the interstellar plasma, in future EHT polarimetric observations of Sgr A*.« less
  4. Abstract It is commonly believed that blazar jets are relativistic magnetized plasma outflows from supermassive black holes. One key question is how the jets dissipate magnetic energy to accelerate particles and drive powerful multiwavelength flares. Relativistic magnetic reconnection has been proposed as the primary plasma physical process in the blazar emission region. Recent numerical simulations have shown strong acceleration of nonthermal particles that may lead to multiwavelength flares. Nevertheless, previous works have not directly evaluated γ -ray signatures from first-principles simulations. In this paper, we employ combined particle-in-cell and polarized radiation transfer simulations to study multiwavelength radiation and optical polarization signatures under the leptonic scenario from relativistic magnetic reconnection. We find harder-when-brighter trends in optical and Fermi-LAT γ -ray bands as well as closely correlated optical and γ -ray flares. The swings in optical polarization angle are also accompanied by γ -ray flares with trivial time delays. Intriguingly, we find highly variable synchrotron self-Compton signatures due to inhomogeneous particle distributions during plasmoid mergers. This feature may result in fast γ -ray flares or orphan γ -ray flares under the leptonic scenario, complementary to the frequently considered minijet scenario. It may also imply neutrino emission with low secondary synchrotron flux undermore »the hadronic scenario, if plasmoid mergers can accelerate protons to very high energy.« less
  5. Abstract We present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5–11 campaign. The observations were carried out with eight facilities at six locations across the globe. Novel calibration methods are employed to account for Sgr A*'s flux variability. The majority of the 1.3 mm emission arises from horizon scales, where intrinsic structural source variability is detected on timescales of minutes to hours. The effects of interstellar scattering on the image and its variability are found to be subdominant to intrinsic source structure. The calibrated visibility amplitudes, particularly the locations of the visibility minima, are broadly consistent with a blurred ring with a diameter of ∼50 μ as, as determined in later works in this series. Contemporaneous multiwavelength monitoring of Sgr A* was performed at 22, 43, and 86 GHz and at near-infrared and X-ray wavelengths. Several X-ray flares from Sgr A* are detected by Chandra, one at low significance jointly with Swift on 2017 April 7 and the other at higher significance jointly with NuSTAR on 2017 April 11. The brighter April 11 flare is not observed simultaneouslymore »by the EHT but is followed by a significant increase in millimeter flux variability immediately after the X-ray outburst, indicating a likely connection in the emission physics near the event horizon. We compare Sgr A*’s broadband flux during the EHT campaign to its historical spectral energy distribution and find that both the quiescent emission and flare emission are consistent with its long-term behavior.« less